예제 #1
0
        model.arg2 = spa.State(D, vocab=vocab_concepts,
                               feedback=0)  #argument 2 from input
        model.answer = spa.State(
            D, vocab=vocab_concepts, feedback=1, feedback_synapse=.05
        )  #result from retrieval (or counting in the full model)

    #set the inputs to the model (bypassing the need for a visual system)
    model.input = spa.Input(goal=goal_func,
                            target=target_func,
                            arg1=arg1_func,
                            arg2=arg2_func)

    #Declarative Memory
    model.declarative = assoc_mem_acc.AssociativeMemoryAccumulator(
        input_vocab=vocab_problems,
        wta_output=True,
        wta_inhibit_scale=10,
        threshold=.5)

    #Comparison
    model.comparison = compare_acc_zbrodoff.CompareAccumulator(
        vocab_compare=vocab_concepts, status_scale=.6, status_feedback=.6)

    #Motor
    model.motor = spa.State(dimensions=Dlow, vocab=vocab_motor)

    #Basal Ganglia & Thalamus
    actions = spa.Actions(

        #encode and retrieve
        a_retrieve=
예제 #2
0
    #Imaginal: a network with three slots: arg1, arg2, and answer.
    model.imaginal = nengo.Network(seed=fseed)
    with model.imaginal:
        model.arg1 = spa.State(D, vocab=vocab_concepts,feedback=0) #argument 1 from input   /for count feedback=1
        model.arg2 = spa.State(D, vocab=vocab_concepts,feedback=0) #argument 2 from input   /for count feedback=1
        model.answer = spa.State(D, vocab=vocab_concepts,feedback=1,feedback_synapse=.05) # /for count feedback=.8
        #model.answer = spa.State(D, vocab=vocab_concepts,feedback=1,feedback_synapse=.05) # /for count feedback=.8
    
            
    #set the inputs to the model (bypassing the need for a visual system)
    #model.input = spa.Input(goal=goal_func, target=target_func, arg1=arg1_func, arg2=arg2_func)
    #from count model
    model.input = spa.Input(vision=vision_input_func,goal=goal_input_func)

    #Number memory
    model.number_memory = assoc_mem_acc.AssociativeMemoryAccumulator(input_vocab = vocab_numbers, wta_output=True, status_scale=.7,threshold=.1,status_feedback=.3)

    #Alphabet memory
    model.letter_memory = assoc_mem_acc.AssociativeMemoryAccumulator(input_vocab = vocab_letters, wta_output=True, status_scale=.7,threshold=.2,status_feedback=.3)
        
    #Comparison
    model.comparison = compare_acc_zbrodoff.CompareAccumulator(vocab_compare = vocab_concepts,status_scale = .4,status_feedback = .2, status_feedback_synapse=.05, threshold_cleanup=.1)

    #final Comparison
    model.comparison2 = compare_acc_zbrodoff.CompareAccumulator(vocab_compare = vocab_concepts,status_scale = .6,status_feedback = .2, status_feedback_synapse=.05, threshold_cleanup=.1)

    #Motor
    model.motor = spa.State(Dlow,vocab=vocab_motor,feedback=1) #motor state       
    
  
    #bcm_model
예제 #3
0
        model.arg2 = spa.State(
            D, vocab=vocab_concepts,
            feedback=0)  #argument 2 from input   /for count feedback=1
        model.answer = spa.State(
            D, vocab=vocab_concepts, feedback=1,
            feedback_synapse=.05)  # /for count feedback=.8

    #set the inputs to the model (bypassing the need for a visual system)
    #model.input = spa.Input(goal=goal_func, target=target_func, arg1=arg1_func, arg2=arg2_func)
    #from count model
    model.input = spa.Input(vision=vision_input_func, goal=goal_input_func)

    #Number memory
    model.number_memory = assoc_mem_acc.AssociativeMemoryAccumulator(
        input_vocab=vocab_numbers,
        wta_output=True,
        status_scale=.7,
        threshold=.1,
        status_feedback=.3)
    #nengo.Connection(model.number_memory.output,model.number_memory.input,transform=.2) #feedback on number memory

    #Alphabet memory
    model.letter_memory = assoc_mem_acc.AssociativeMemoryAccumulator(
        input_vocab=vocab_letters,
        wta_output=True,
        status_scale=.7,
        threshold=.2,
        status_feedback=.3)
    #nengo.Connection(model.letter_memory.output,model.letter_memory.input,transform=.2) #feedback on letter memory

    #Declarative Memory
    model.declarative = assoc_mem_acc.AssociativeMemoryAccumulator(