def test_true_anom(): r""" Test for True Anomaly Function """ r_vector = [1, 2, 3] h_vector = [-3, 6, -3] e_vector = [2, 3, 4] actual_out = RV2COE.true_anom(r_vector, h_vector, e_vector) expected_out = -0.12186756768575521 np.testing.assert_allclose(actual_out, expected_out)
r_input = [r_i, r_j, r_k] v_input = [v_i, v_j, v_k] Line_1 = ("The mu Constant: \n\t", str(mu), "\n", 'Radius {} (km)\n\t{}\n'.format(count+1,r_input)) Line_2 = ('Velocity {} (km/s)\n\t{}\n'.format(count+1,v_input)) r"""Inner Workings, Pulling outside functions""" h_input = RV2COE.ang_momentum(r_input, v_input) e_vector = RV2COE.eccentricity(mu, r_input, v_input, h_input) n_vector = RV2COE.line_of_nodes(RV2COE.unit_vector(h_input)) p = RV2COE.semi_latus_rectum(mu, h_input) theta = RV2COE.true_anom(r_input, h_input, e_vector) i = RV2COE.inclination(RV2COE.unit_vector(h_input)) a = RV2COE.semi_major_axis(p, np.linalg.norm(e_vector)) raan = RV2COE.R_A_A_N(n_vector) w = RV2COE.arg_of_periapsis(n_vector, e_vector, h_input) r_p = RV2COE.rad_peri(p, np.linalg.norm(e_vector)) r_a = RV2COE.rad_apo(p, np.linalg.norm(e_vector)) gamma = RV2COE.flight_ang(np.linalg.norm(e_vector), theta)