예제 #1
0
def get_stars_and_galaxies(Nstars=5000, Ngals=5000):
    """Get the subset of star/galaxy data to plot"""
    data = fetch_imaging_sample()

    objtype = data['type']

    stars = data[objtype == 6][:Nstars]
    galaxies = data[objtype == 3][:Ngals]

    return stars, galaxies
예제 #2
0
def get_stars_and_galaxies(Nstars=5000, Ngals=5000):
    """Get the subset of star/galaxy data to plot"""
    data = fetch_imaging_sample()

    objtype = data['type']

    stars = data[objtype == 6][:Nstars]
    galaxies = data[objtype == 3][:Ngals]

    return stars, galaxies
예제 #3
0
# Author: Jake VanderPlas <*****@*****.**>
# License: BSD
#   The figure is an example from astroML: see http://astroML.github.com
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import fetch_imaging_sample

#------------------------------------------------------------
# Get the star/galaxy data
data = fetch_imaging_sample()

objtype = data['type']

stars = data[objtype == 6][:5000]
galaxies = data[objtype == 3][:5000]

#------------------------------------------------------------
# Plot the stars and galaxies
plot_kwargs = dict(color='k', linestyle='none', marker='.', markersize=1)

fig = plt.figure()

ax1 = fig.add_subplot(221)
ax1.plot(galaxies['gRaw'] - galaxies['rRaw'],
         galaxies['rRaw'],
         **plot_kwargs)

ax2 = fig.add_subplot(223, sharex=ax1)
ax2.plot(galaxies['gRaw'] - galaxies['rRaw'],
         galaxies['rRaw'] - galaxies['iRaw'],
         **plot_kwargs)
예제 #4
0
"""
SDSS Imaging
============
This example shows how to load the magnitude data from the SDSS imaging
catalog, and plot colors and magnitudes of the stars and galaxies.
"""
# Author: Jake VanderPlas <*****@*****.**>
# License: BSD
#   The figure is an example from astroML: see http://astroML.github.com
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import fetch_imaging_sample

#------------------------------------------------------------
# Get the star/galaxy data
data = fetch_imaging_sample()

objtype = data['type']

stars = data[objtype == 6][:5000]
galaxies = data[objtype == 3][:5000]

#------------------------------------------------------------
# Plot the stars and galaxies
plot_kwargs = dict(color='k', linestyle='none', marker='.', markersize=1)

fig = plt.figure()

ax1 = fig.add_subplot(221)
ax1.plot(galaxies['gRaw'] - galaxies['rRaw'],
         galaxies['rRaw'],
예제 #5
0
from astroML.density_estimation import XDGMM
from astroML.crossmatch import crossmatch
from astroML.datasets import fetch_sdss_S82standards, fetch_imaging_sample
from astroML.plotting.tools import draw_ellipse
from astroML.decorators import pickle_results
from astroML.stats import sigmaG

#------------------------------------------------------------
# define u-g-r-i-z extinction from Berry et al, arXiv 1111.4985
# multiply extinction by A_r
extinction_vector = np.array([1.810, 1.400, 1.0, 0.759, 0.561])

#----------------------------------------------------------------------
# Fetch and process the noisy imaging data
data_noisy = fetch_imaging_sample()

# select only stars
data_noisy = data_noisy[data_noisy['type'] == 6]

# Get the extinction-corrected magnitudes for each band
X = np.vstack([data_noisy[f + 'RawPSF'] for f in 'ugriz']).T
Xerr = np.vstack([data_noisy[f + 'psfErr'] for f in 'ugriz']).T

# extinction terms from Berry et al, arXiv 1111.4985
X -= (extinction_vector * data_noisy['rExtSFD'][:, None])


#----------------------------------------------------------------------
# Fetch and process the stacked imaging data
data_stacked = fetch_sdss_S82standards()
예제 #6
0
#----------------------------------------------------------------------
# This function adjusts matplotlib settings for a uniform feel in the textbook.
# Note that with usetex=True, fonts are rendered with LaTeX.  This may
# result in an error if LaTeX is not installed on your system.  In that case,
# you can set usetex to False.
from astroML.plotting import setup_text_plots
setup_text_plots(fontsize=8, usetex=True)

#------------------------------------------------------------
# define u-g-r-i-z extinction from Berry et al, arXiv 1111.4985
# multiply extinction by A_r
extinction_vector = np.array([1.810, 1.400, 1.0, 0.759, 0.561])

#----------------------------------------------------------------------
# Fetch and process the noisy imaging data
data_noisy = fetch_imaging_sample()

# select only stars
data_noisy = data_noisy[data_noisy['type'] == 6]

# Get the extinction-corrected magnitudes for each band
X = np.vstack([data_noisy[f + 'RawPSF'] for f in 'ugriz']).T
Xerr = np.vstack([data_noisy[f + 'psfErr'] for f in 'ugriz']).T

# extinction terms from Berry et al, arXiv 1111.4985
X -= (extinction_vector * data_noisy['rExtSFD'][:, None])

#----------------------------------------------------------------------
# Fetch and process the stacked imaging data
data_stacked = fetch_sdss_S82standards()