def categorical_crossentropy(y_true, y_pred, from_logits=False): """ Categorical cross-entropy between an output tensor and a target tensor, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param from_logits: From logits space or not. If you want to use logits, please use from_logits=True :type from_logits: boolean :return: Categorical Cross-Entropy :rtype: tf.Tensor :History: 2018-Jan-14 - Written - Henry Leung (University of Toronto) """ # calculate correction term first correction = magic_correction_term(y_true) # Deal with magic number y_true = tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), y_true) # Note: tf.nn.softmax_cross_entropy_with_logits_v2 expects logits, we expects probabilities by default. if not from_logits: epsilon_tensor = tf.cast(tf.constant(keras.backend.epsilon()), tf.float32) # scale preds so that the class probas of each sample sum to 1 y_pred /= tf.reduce_sum(y_pred, len(y_pred.get_shape()) - 1, True) # manual computation of crossentropy y_pred = tf.clip_by_value(y_pred, epsilon_tensor, 1. - epsilon_tensor) return -tf.reduce_sum(y_true * tf.log(y_pred), len(y_pred.get_shape()) - 1) * correction else: return tf.nn.softmax_cross_entropy_with_logits_v2( labels=y_true, logits=y_pred) * correction
def test_loss_magic(self): # =============Magic correction term============= # with tf.device("/cpu:0"), context.eager_mode(): y_true = tf.constant([[2., MAGIC_NUMBER, MAGIC_NUMBER], [2., MAGIC_NUMBER, 4.]]) npt.assert_array_equal( magic_correction_term(y_true).numpy(), [3., 1.5])
def binary_crossentropy(y_true, y_pred, from_logits=False): """ Binary cross-entropy between an output tensor and a target tensor, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param from_logits: From logits space or not. If you want to use logits, please use from_logits=True :type from_logits: boolean :return: Binary Cross-Entropy :rtype: tf.Tensor :History: 2018-Jan-14 - Written - Henry Leung (University of Toronto) """ # Note: tf.nn.sigmoid_cross_entropy_with_logits expects logits, we expects probabilities by default. if not from_logits: epsilon_tensor = tf.cast(tf.constant(keras.backend.epsilon()), tf.float32) # transform back to logits y_pred = tf.clip_by_value(y_pred, epsilon_tensor, 1. - epsilon_tensor) y_pred = tf.log(y_pred / (1. - y_pred)) cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred) corrected_cross_entropy = tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(cross_entropy), cross_entropy) return tf.reduce_mean(corrected_cross_entropy, axis=-1) * magic_correction_term(y_true)
def mean_squared_logarithmic_error(y_true, y_pred, sample_weight=None): """ Calculate mean squared logarithmic error, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param sample_weight: Sample weights :type sample_weight: Union(tf.Tensor, tf.Variable, list) :return: Mean Squared Logarithmic Error :rtype: tf.Tensor :History: 2018-Feb-17 - Written - Henry Leung (University of Toronto) """ tf_inf = tf.cast(tf.constant(1) / tf.constant(0), tf.float32) epsilon_tensor = tf.cast(tf.constant(tfk.backend.epsilon()), tf.float32) first_log = tf.math.log( tf.clip_by_value(y_pred, epsilon_tensor, tf_inf) + 1.) second_log = tf.math.log( tf.clip_by_value(y_true, epsilon_tensor, tf_inf) + 1.) log_diff = tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), tf.square(first_log - second_log)) losses = tf.reduce_mean(log_diff, axis=-1) * magic_correction_term(y_true) return weighted_loss(losses, sample_weight)
def robust_binary_crossentropy(y_true, y_pred, logit_var): """ Calculate binary accuracy, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction in logits space :type y_pred: Union(tf.Tensor, tf.Variable) :param logit_var: Predictive variance in logits space :type logit_var: Union(tf.Tensor, tf.Variable) :return: categorical cross-entropy :rtype: tf.Tensor :History: 2018-Mar-15 - Written - Henry Leung (University of Toronto) """ variance_depressor = tf.reduce_mean( tf.exp(logit_var) - tf.ones_like(logit_var)) undistorted_loss = binary_crossentropy(y_true, y_pred, from_logits=True) dist = distributions.Normal(loc=y_pred, scale=logit_var) mc_result = tf.map_fn(lambda x: -tf.nn.elu( undistorted_loss - binary_crossentropy(y_true, x, from_logits=True)), dist.sample([25]), dtype=tf.float32) variance_loss = tf.reduce_mean(mc_result, axis=0) * undistorted_loss return (variance_loss + undistorted_loss + variance_depressor) * magic_correction_term(y_true)
def robust_binary_crossentropy(y_true, y_pred, logit_var, sample_weight): """ Calculate binary accuracy, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction in logits space :type y_pred: Union(tf.Tensor, tf.Variable) :param logit_var: Predictive variance in logits space :type logit_var: Union(tf.Tensor, tf.Variable) :param sample_weight: Sample weights :type sample_weight: Union(tf.Tensor, tf.Variable, list) :return: categorical cross-entropy :rtype: tf.Tensor :History: 2018-Mar-15 - Written - Henry Leung (University of Toronto) """ variance_depressor = tf.reduce_mean(tf.exp(logit_var) - tf.ones_like(logit_var)) undistorted_loss = binary_crossentropy(y_true, y_pred, from_logits=True) dist = tfd.Normal(loc=y_pred, scale=logit_var) mc_num = 25 batch_size = tf.shape(y_pred)[0] label_size = tf.shape(y_pred)[-1] mc_result = -tf.nn.elu(tf.tile(undistorted_loss, [mc_num]) - binary_crossentropy(tf.tile(y_true, [mc_num, 1]), tf.reshape(dist.sample([mc_num]), (batch_size * mc_num, label_size)), from_logits=True)) variance_loss = tf.reduce_mean(tf.reshape(mc_result, (mc_num, batch_size)), axis=0) * undistorted_loss losses = (variance_loss + undistorted_loss + variance_depressor) * magic_correction_term(y_true) return weighted_loss(losses, sample_weight)
def robust_mse(y_true, y_pred, variance, labels_err): """ Calculate predictive variance, and takes account of labels error in Bayesian Neural Network :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param variance: Predictive Variance :type variance: Union(tf.Tensor, tf.Variable) :param labels_err: Known labels error, give zeros if unknown/unavailable :type labels_err: Union(tf.Tensor, tf.Variable) :return: Robust Mean Squared Error, can be used directly with Tensorflow :rtype: tf.Tensor :History: 2018-April-07 - Written - Henry Leung (University of Toronto) """ # labels_err still contains magic_number labels_err_y = tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), labels_err) # Neural Net is predicting log(var), so take exp, takes account the target variance, and take log back y_pred_corrected = tf.log(tf.exp(variance) + tf.square(labels_err_y)) wrapper_output = tf.where( tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), 0.5 * tf.square(y_true - y_pred) * (tf.exp(-y_pred_corrected)) + 0.5 * y_pred_corrected) return tf.reduce_mean(wrapper_output, axis=-1) * magic_correction_term(y_true)
def test_loss_magic(self): # =============Magic correction term============= # y_true = tf.constant([[2., MAGIC_NUMBER, MAGIC_NUMBER], [2., MAGIC_NUMBER, 4.]]) npt.assert_array_equal( magic_correction_term(y_true).eval(session=get_session()), [3., 1.5])
def mean_error(y_true, y_pred): """ Calculate mean error as a way to get the bias in prediction, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :return: Mean Error :rtype: tf.Tensor :History: 2018-May-22 - Written - Henry Leung (University of Toronto) """ return tf.reduce_mean(tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), y_true - y_pred), axis=-1) * magic_correction_term(y_true)
def mean_squared_error(y_true, y_pred): """ Calculate mean square error losses :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :return: Mean Squared Error :rtype: tf.Tensor :History: 2017-Nov-16 - Written - Henry Leung (University of Toronto) """ return tf.reduce_mean(tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), tf.square(y_true - y_pred)), axis=-1) * magic_correction_term(y_true)
def mean_absolute_error(y_true, y_pred): """ Calculate mean absolute error, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :return: Mean Absolute Error :rtype: tf.Tensor :History: 2018-Jan-14 - Written - Henry Leung (University of Toronto) """ return tf.reduce_mean(tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), tf.abs(y_true - y_pred)), axis=-1) * magic_correction_term(y_true)
def categorical_accuracy(y_true, y_pred): """ Calculate categorical accuracy, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :return: Categorical Classification Accuracy :rtype: tf.Tensor :History: 2018-Jan-21 - Written - Henry Leung (University of Toronto) """ y_true = tf.where(magic_num_check(y_true), tf.zeros_like(y_true), y_true) return tf.cast(tf.equal(tf.argmax(y_true, axis=-1), tf.argmax(y_pred, axis=-1)), tf.float32) * magic_correction_term(y_true)
def mean_squared_error(y_true, y_pred, sample_weight=None): """ Calculate mean square error losses :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param sample_weight: Sample weights :type sample_weight: Union(tf.Tensor, tf.Variable, list) :return: Mean Squared Error :rtype: tf.Tensor :History: 2017-Nov-16 - Written - Henry Leung (University of Toronto) """ losses = tf.reduce_mean(tf.where(magic_num_check(y_true), tf.zeros_like(y_true), tf.square(y_true - y_pred)), axis=-1) * magic_correction_term(y_true) return weighted_loss(losses, sample_weight)
def mean_error(y_true, y_pred, sample_weight=None): """ Calculate mean error as a way to get the bias in prediction, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param sample_weight: Sample weights :type sample_weight: Union(tf.Tensor, tf.Variable, list) :return: Mean Error :rtype: tf.Tensor :History: 2018-May-22 - Written - Henry Leung (University of Toronto) """ losses = tf.reduce_mean(tf.where(magic_num_check(y_true), tf.zeros_like(y_true), y_true - y_pred), axis=-1) * magic_correction_term(y_true) return weighted_loss(losses, sample_weight)
def mean_percentage_error(y_true, y_pred): """ Calculate mean percentage error, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :return: Mean Percentage Error :rtype: tf.Tensor :History: 2018-Jun-06 - Written - Henry Leung (University of Toronto) """ tf_inf = tf.cast(tf.constant(1) / tf.constant(0), tf.float32) epsilon_tensor = tf.cast(tf.constant(keras.backend.epsilon()), tf.float32) diff = y_true - y_pred / tf.clip_by_value(y_true, epsilon_tensor, tf_inf) diff_corrected = tf.where(tf.equal(y_true, MAGIC_NUMBER), tf.zeros_like(y_true), diff) return 100. * tf.reduce_mean(diff_corrected, axis=-1) * magic_correction_term(y_true)
def mean_percentage_error(y_true, y_pred, sample_weight=None): """ Calculate mean percentage error, ignoring the magic number :param y_true: Ground Truth :type y_true: Union(tf.Tensor, tf.Variable) :param y_pred: Prediction :type y_pred: Union(tf.Tensor, tf.Variable) :param sample_weight: Sample weights :type sample_weight: Union(tf.Tensor, tf.Variable, list) :return: Mean Percentage Error :rtype: tf.Tensor :History: 2018-Jun-06 - Written - Henry Leung (University of Toronto) """ tf_inf = tf.cast(tf.constant(1) / tf.constant(0), tf.float32) epsilon_tensor = tf.cast(tf.constant(tfk.backend.epsilon()), tf.float32) diff = y_true - y_pred / tf.clip_by_value(y_true, epsilon_tensor, tf_inf) diff_corrected = tf.where(magic_num_check(y_true), tf.zeros_like(y_true), diff) losses = 100. * tf.reduce_mean(diff_corrected, axis=-1) * magic_correction_term(y_true) return weighted_loss(losses, sample_weight)
def binary_accuracy_internal(y_true, y_pred): if from_logits: y_pred = tf.nn.sigmoid(y_pred) return tf.reduce_mean(tf.cast(tf.equal(y_true, tf.round(y_pred)), tf.float32), axis=-1) * magic_correction_term(y_true)
def test_loss_func(self): # make sure custom reduce_var works var_array = [1, 2, 3, 4, 5] self.assertEqual(reduce_var(tf.Variable(var_array)).eval(session=get_session()), np.var(var_array)) # =============Magic correction term============= # y_true = tf.Variable([[2., MAGIC_NUMBER, MAGIC_NUMBER], [2., MAGIC_NUMBER, 4.]]) npt.assert_array_equal(magic_correction_term(y_true).eval(session=get_session()), [3., 1.5]) # =============MSE/MAE============= # y_pred = tf.Variable([[2., 3., 4.], [2., 3., 7.]]) y_pred_2 = tf.Variable([[2., 9., 4.], [2., 0., 7.]]) y_true = tf.Variable([[2., MAGIC_NUMBER, 4.], [2., MAGIC_NUMBER, 4.]]) npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).eval(session=get_session()), [0., 3. / 2.]) npt.assert_almost_equal(mean_squared_error(y_true, y_pred).eval(session=get_session()), [0., 9. / 2]) # make sure neural network prediction won't matter for magic number term npt.assert_almost_equal(mean_absolute_error(y_true, y_pred).eval(session=get_session()), mean_absolute_error(y_true, y_pred_2).eval(session=get_session())) npt.assert_almost_equal(mean_squared_error(y_true, y_pred).eval(session=get_session()), mean_squared_error(y_true, y_pred_2).eval(session=get_session())) # =============Mean Error============= # y_pred = tf.Variable([[1., 3., 4.], [2., 3., 7.]]) y_true = tf.Variable([[2., MAGIC_NUMBER, 3.], [2., MAGIC_NUMBER, 7.]]) npt.assert_almost_equal(mean_error(y_true, y_pred).eval(session=get_session()), [0., 0.]) # =============Accuracy============= # y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [0., MAGIC_NUMBER, 1.]]) npt.assert_array_equal(categorical_accuracy(y_true, y_pred).eval(session=get_session()), [1., 0.]) npt.assert_almost_equal(binary_accuracy(from_logits=False)(y_true, y_pred).eval(session=get_session()), [1. / 2., 0.]) # =============Abs Percentage Accuracy============= # y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]]) y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]]) npt.assert_array_almost_equal(mean_absolute_percentage_error(y_true, y_pred).eval(session=get_session()), [50., 50.], decimal=3) # make sure neural network prediction won't matter for magic number term npt.assert_array_almost_equal(mean_absolute_percentage_error(y_true, y_pred).eval(session=get_session()), mean_absolute_percentage_error(y_true, y_pred_2).eval(session=get_session()), decimal=3) # =============Percentage Accuracy============= # y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]]) y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]]) npt.assert_array_almost_equal(mean_percentage_error(y_true, y_pred).eval(session=get_session()), [50., 50.], decimal=3) # make sure neural network prediction won't matter for magic number term npt.assert_array_almost_equal(mean_percentage_error(y_true, y_pred).eval(session=get_session()), mean_percentage_error(y_true, y_pred_2).eval(session=get_session()), decimal=3) # =============Mean Squared Log Error============= # y_pred = tf.Variable([[1., 0., 0.], [1., 0., 0.]]) y_pred_2 = tf.Variable([[1., 9., 0.], [1., -1., 0.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]]) npt.assert_array_almost_equal(mean_squared_logarithmic_error(y_true, y_pred).eval(session=get_session()), [0.24, 0.24], decimal=3) # make sure neural network prediction won't matter for magic number term npt.assert_array_almost_equal(mean_squared_logarithmic_error(y_true, y_pred).eval(session=get_session()), mean_squared_logarithmic_error(y_true, y_pred_2).eval(session=get_session()), decimal=3) # =============Zeros Loss============= # y_pred = tf.Variable([[1., 0., 0.], [5., -9., 2.]]) y_true = tf.Variable([[1., MAGIC_NUMBER, 1.], [1., MAGIC_NUMBER, 1.]]) npt.assert_array_almost_equal(zeros_loss(y_true, y_pred).eval(session=get_session()), [0., 0.])