def testOneTimeSeriesFeature(self): # Build config. feature_spec = { "time_feature_1": { "length": 10, "is_time_series": True, } } config = configurations.base() config["inputs"]["features"] = feature_spec config = configdict.ConfigDict(config) # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate hidden layers. self.assertItemsEqual(["time_feature_1"], model.time_series_hidden_layers.keys()) self.assertIs(model.time_series_features["time_feature_1"], model.time_series_hidden_layers["time_feature_1"]) self.assertEqual(len(model.aux_hidden_layers), 0) self.assertIs(model.time_series_features["time_feature_1"], model.pre_logits_concat)
def testZeroHiddenLayers(self): # Build config. feature_spec = { "time_feature_1": { "length": 10, "is_time_series": True, }, "time_feature_2": { "length": 10, "is_time_series": True, }, "aux_feature_1": { "length": 1, "is_time_series": False, }, } config = configurations.base() config["inputs"]["features"] = feature_spec config = configdict.ConfigDict(config) config.hparams.output_dim = 1 config.hparams.num_pre_logits_hidden_layers = 0 # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate Tensor shapes. self.assertShapeEquals((None, 21), model.pre_logits_concat) logits_w = testing.get_variable_by_name("logits/kernel") self.assertShapeEquals((21, 1), logits_w)
def testInvalidModeRaisesError(self): # Build config. config = configdict.ConfigDict(configurations.base()) # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() with self.assertRaises(ValueError): _ = astro_model.AstroModel(features, labels, config.hparams, "training")
def testZeroFeaturesRaisesError(self): # Build config. config = configurations.base() config["inputs"]["features"] = {} config = configdict.ConfigDict(config) # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) with self.assertRaises(ValueError): # Raises ValueError because at least one feature is required. model.build()
def testEvalMode(self): # Build config. feature_spec = { "time_feature_1": { "length": 10, "is_time_series": True, }, "time_feature_2": { "length": 10, "is_time_series": True, }, "aux_feature_1": { "length": 1, "is_time_series": False, }, } config = configurations.base() config["inputs"]["features"] = feature_spec config = configdict.ConfigDict(config) config.hparams.output_dim = 1 # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate Tensor shapes. self.assertShapeEquals((None, 21), model.pre_logits_concat) self.assertShapeEquals((None, 1), model.logits) self.assertShapeEquals((None, 1), model.predictions) self.assertShapeEquals((None, ), model.batch_losses) self.assertShapeEquals((), model.total_loss) # Execute the TensorFlow graph. scaffold = tf.train.Scaffold() scaffold.finalize() with self.session() as sess: sess.run([scaffold.init_op, scaffold.local_init_op]) step = sess.run(model.global_step) self.assertEqual(0, step) # Fetch total loss. features = testing.fake_features(feature_spec, batch_size=16) labels = testing.fake_labels(config.hparams.output_dim, batch_size=16) feed_dict = input_ops.prepare_feed_dict(model, features, labels) total_loss = sess.run(model.total_loss, feed_dict=feed_dict) self.assertShapeEquals((), total_loss)
def testTwoHiddenLayers(self): # Build config. feature_spec = { "time_feature_1": { "length": 10, "is_time_series": True, }, "time_feature_2": { "length": 10, "is_time_series": True, }, "aux_feature_1": { "length": 1, "is_time_series": False, }, } config = configurations.base() config["inputs"]["features"] = feature_spec config = configdict.ConfigDict(config) config.hparams.output_dim = 1 config.hparams.num_pre_logits_hidden_layers = 2 config.hparams.pre_logits_hidden_layer_size = 5 # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # TODO(shallue): TensorFlow 2.0 doesn't have global variable collections. # If we want to keep testing variable shapes in 2.0, we must keep track of # the individual Keras Layer objects in the model class. variables = {v.op.name: v for v in tf.global_variables()} # Validate Tensor shapes. self.assertShapeEquals((None, 21), model.pre_logits_concat) fc1 = variables["pre_logits_hidden/fully_connected_1/kernel"] self.assertShapeEquals((21, 5), fc1) fc2 = variables["pre_logits_hidden/fully_connected_2/kernel"] self.assertShapeEquals((5, 5), fc2) logits_w = variables["logits/kernel"] self.assertShapeEquals((5, 1), logits_w)