예제 #1
0
def test_simple_flat(inplace):
    
    expect = np.ones((20, 20))*3
    expect[0:5, 0:5] = 3/0.5
    
    # Checking flat division:
    frame1 = FrameData(np.ones((20, 20))*3, unit=u.adu)
    
    master_flat_dimless = FrameData(np.ones((20, 20)), unit=None)
    master_flat_dimless.data[0:5, 0:5] = 0.5
    
    res1 = flat_correct(frame1, master_flat_dimless, inplace=inplace)
    
    check.is_true(isinstance(res1, FrameData))
    npt.assert_array_equal(res1.data, expect)
    check.equal(res1.header['hierarch astropop flat_corrected'], True)
    
    # # Checking flat-corrected frame unit:
    # check.equal(res1.unit, u.Unit('adu'))
    
    # Check inplace statement:
    if inplace:
        check.is_true(res1.data is frame1.data)
    else:
        check.is_false(res1.data is frame1.data)
예제 #2
0
def gen_frame(value, uncertainty=None, unit='adu'):
    """Gen frames with {'v', 'u'} dict"""
    shape = SHAPE
    frame = FrameData(np.ones(shape, dtype='f8'),
                      unit=unit,
                      uncertainty=uncertainty)
    frame.data[:] = value
    return frame
예제 #3
0
 def gen_frame(v):
     # Gen frames with {'v', 'u'} dict
     shape = (10, 10)
     if v['u'] is None:
         frame = FrameData(np.ones(shape, dtype='f8'), unit='adu')
     else:
         frame = FrameData(np.ones(shape, dtype='f8'), unit='adu',
                           uncertainty=v['u'])
     frame.data[:] = v['v']
     return frame
예제 #4
0
 def test_invalid_method(self):
     n = 10
     d = np.ones((10, 10))
     l = [FrameData(d, unit='adu') for i in range(n)]
     comb = ImCombiner()
     with pytest.raises(ValueError,
                        match='hulk-smash is not a valid '
                        'combining method.'):
         comb.combine(l, method='hulk-smash')
예제 #5
0
    def test_simple_bias(self, inplace):
        expected = np.ones((20, 20)) * 2
        expected[0:5, 0:5] = 2.5

        frame4bias = FrameData(np.ones((20, 20)) * 3, unit='adu')

        master_bias = FrameData(np.ones((20, 20)), unit='adu')
        master_bias.data[0:5, 0:5] = 0.5

        res4 = subtract_bias(frame4bias, master_bias, inplace=inplace)

        assert_is_instance(res4, FrameData)
        assert_equal(res4.data, expected)
        assert_equal(res4.header['hierarch astropop bias_corrected'], True)

        if inplace:
            assert_is(res4.data, frame4bias.data)
        else:
            assert_is_not(res4.data, frame4bias.data)
예제 #6
0
    def test_simple_flat(self, inplace):
        expect = np.ones((20, 20)) * 3
        expect[0:5, 0:5] = 3 / 0.5

        # Checking flat division:
        frame1 = FrameData(np.ones((20, 20)) * 3, unit=u.adu)

        master_flat_dimless = FrameData(np.ones((20, 20)), unit=None)
        master_flat_dimless.data[0:5, 0:5] = 0.5

        res1 = flat_correct(frame1, master_flat_dimless, inplace=inplace)

        assert_is_instance(res1, FrameData)
        assert_equal(res1.data, expect)
        assert_equal(res1.header['hierarch astropop flat_corrected'], True)

        if inplace:
            assert_is(res1.data, frame1.data)
        else:
            assert_is_not(res1.data, frame1.data)
예제 #7
0
    def create_framedata_array(self, values, size=(100, 100), unct=None):
        # values is an array containing the scale factor for each image

        with NumpyRNGContext(123):
            data = np.random.normal(loc=100, scale=20, size=size)

        arr = [None] * len(values)
        for i, k in enumerate(values):
            u = unct * data * k if unct is not None else unct
            arr[i] = FrameData(data * k, uncertainty=u, unit='adu')

        return arr, data
예제 #8
0
 def test_register_frame_equal(self, inplace):
     im = gen_image((50, 50), [25], [25], [10000], 10, 0, sigma=3)
     im = FrameData(im)
     ar = CrossCorrelationRegister()
     im_reg = ar.register_framedata(im, im, inplace=inplace)
     if inplace:
         assert_is(im_reg, im)
     else:
         assert_is_not(im_reg, im)
     assert_equal(im_reg.data, im.data)
     assert_equal(im_reg.mask, np.zeros_like(im))
     assert_equal(im_reg.meta['astropop registration_shift'], [0, 0])
예제 #9
0
    def test_register_framedata(self, inplace, cval, fill):
        im1 = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
               [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
               [1, 1, 2, 2, 2, 1, 1, 1, 1, 1], [1, 2, 4, 6, 4, 2, 1, 1, 1, 1],
               [1, 2, 6, 8, 6, 2, 1, 1, 1, 1], [1, 2, 4, 6, 4, 2, 1, 1, 1, 1],
               [1, 1, 2, 2, 2, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

        im2 = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
               [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2, 2, 1, 1, 1],
               [1, 1, 1, 2, 4, 6, 4, 2, 1, 1], [1, 1, 1, 2, 6, 8, 6, 2, 1, 1],
               [1, 1, 1, 2, 4, 6, 4, 2, 1, 1], [1, 1, 1, 1, 2, 2, 2, 1, 1, 1],
               [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

        expect = np.array(im1, dtype='f8')
        expect[0, :] = fill
        expect[:, -2:] = fill

        mask = np.zeros_like(im2, dtype=bool)
        mask[0, :] = 1
        mask[:, -2:] = 1

        expect_unct = np.ones_like(im2, dtype='f8')
        expect_unct[0, :] = np.nan
        expect_unct[:, -2:] = np.nan

        frame1 = FrameData(im1, dtype='f8')
        frame1.meta['moving'] = False
        frame1.uncertainty = np.ones_like(im1)
        frame2 = FrameData(im2, dtype='f8')
        frame2.meta['moving'] = True
        frame2.uncertainty = np.ones_like(im2)

        ar = CrossCorrelationRegister()
        frame_reg = ar.register_framedata(frame1,
                                          frame2,
                                          cval=cval,
                                          inplace=inplace)

        assert_equal(frame_reg.data, expect)
        assert_equal(frame_reg.mask, mask)
        assert_equal(frame_reg.uncertainty, expect_unct)
        assert_equal(frame_reg.meta['astropop registration'],
                     'cross-correlation')
        assert_equal(frame_reg.meta['astropop registration_shift'], [2, -1])
        assert_equal(frame_reg.meta['astropop registration_rot'], 0)
        assert_equal(frame_reg.meta['moving'], True)
        if inplace:
            assert_is(frame_reg, frame2)
        else:
            assert_is_not(frame_reg, frame2)
예제 #10
0
    def create_images(self):
        images = []
        for i in range(30):
            meta = {
                'first_equal': 1,
                'second_equal': 2,
                'first_differ': i,
                'second_differ': i // 2,
                'third_differ': i % 3
            }
            images.append(FrameData(np.ones((10, 10)), unit='adu', meta=meta))

        return images
예제 #11
0
def test_simple_bias(inplace):
  
    expected = np.ones((20, 20))*2
    expected[0:5, 0:5] = 2.5
  
    frame4bias = FrameData(np.ones((20, 20))*3, unit='adu')
  
    master_bias = FrameData(np.ones((20,20)),unit='adu')
    master_bias.data[0:5, 0:5] = 0.5
    
    res4 = subtract_bias(frame4bias, master_bias, inplace=inplace)
    
    check.is_true(isinstance(res4, FrameData))
    npt.assert_array_equal(res4.data, expected)
    check.equal(res4.header['hierarch astropop bias_corrected'], True)
    
    # # Checking bias-subtracted frame unit:
    # check.equal(res1.unit, u.Unit('adu'))
    
    # Check inplace statement:
    if inplace:
        check.is_true(res4.data is frame4bias.data)
    else:
        check.is_false(res4.data is frame4bias.data)
예제 #12
0
    def gen_frame_list(self, size):
        sky = 800
        rdnoise = 10
        n = 100
        x, y, f = gen_position_flux(np.array(size) + 80, n, 1e4, 4e6)
        x -= 40
        y -= 40

        frame_list = []
        for shift in self._shifts:
            x1, y1, flux1 = gen_positions_transformed(x, y, f, *shift, size)
            im1 = gen_image(size, x1, y1, flux1, sky, rdnoise, sigma=2)
            frame = FrameData(im1, meta={'test expect_shift': list(shift)})
            frame_list.append(frame)

        return frame_list
예제 #13
0
    def test_combine_mask_mean(self):
        comb = ImCombiner()
        images = [None] * 10
        shape = (10, 10)
        for i in range(10):
            mask = np.zeros(shape)
            # all (2, 5) elements are masked, so the result must be
            mask[2, 5] = 1
            images[i] = FrameData(np.ones(shape), unit='adu', mask=mask)
        # these points in result must no be masked
        images[5].mask[7, 7] = 1
        images[2].mask[7, 7] = 1
        images[8].mask[8, 8] = 1
        expect = np.zeros(shape)
        expect[2, 5] = 1

        res = comb.combine(images, 'mean')
        assert_equal(res.mask, expect)
예제 #14
0
    def test_chunk_yielder_uncertainty(self):
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        u = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, uncertainty=u, unit='adu') for i in range(n)]

        # simple sum with uncertainties
        comb = ImCombiner(max_memory=2e6, dtype=np.float64)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k, un in zip(chunk, unct):
                assert_in(k.shape, ((7, 100), (2, 100)))
                assert_almost_equal(k, d[slc])
                assert_almost_equal(un, u[slc])
                assert_is_instance(un, np.ma.MaskedArray)
        assert_equal(i, 15)

        # if a single uncertainty is empty, disable it
        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        l[5].uncertainty = None
        comb = ImCombiner(max_memory=2e6, dtype=np.float64)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, ((7, 100), (2, 100)))
                assert_almost_equal(k, d[slc])
                assert_equal(unct, None)
        assert_equal(i, 15)
        assert_in(
            'One or more frames have empty uncertainty. '
            'Some features are disabled.', logs)
        logs.clear()
        logger.setLevel(level)
        logger.removeHandler(lh)
예제 #15
0
    def test_image_loading_framedata(self, tmpdir, disk_cache):
        tmp = tmpdir.strpath
        n = 10
        d = np.ones((10, 10))
        l = [
            FrameData(d,
                      unit='adu',
                      uncertainty=d,
                      cache_folder=tmp,
                      cache_filename=f'test{i}') for i in range(n)
        ]

        comb = ImCombiner(use_disk_cache=disk_cache)
        # must start empty
        assert_equal(len(comb._images), 0)
        assert_is_none(comb._buffer)
        comb._load_images(l)
        assert_equal(len(comb._images), n)
        assert_is_none(comb._buffer)
        for i, v in enumerate(comb._images):
            fil = os.path.join(tmp, f'test{i}')
            assert_is_instance(v, FrameData)
            if disk_cache:
                assert_true(v._memmapping)
                # assert_path_exists(fil+'_copy_copy.data')
                # assert_path_exists(fil+'_copy_copy.unct')
                # assert_path_exists(fil+'_copy_copy.mask')

        comb._clear()
        # must start empty
        assert_equal(len(comb._images), 0)
        assert_is_none(comb._buffer)

        # ensure tmp files cleaned
        if disk_cache:
            for i in range(n):
                fil = os.path.join(tmp, f'test{i}')
                assert_path_not_exists(fil + '_copy_copy.data')
                assert_path_not_exists(fil + '_copy_copy.unct')
                assert_path_not_exists(fil + '_copy_copy.mask')
예제 #16
0
    def test_check_consistency(self):
        n = 10
        d = np.ones((10, 10))
        l = [FrameData(d, unit='adu') for i in range(n)]
        comb = ImCombiner()
        # empty should raise
        with pytest.raises(ValueError, match='Combiner have no images.'):
            comb._check_consistency()

        comb._load_images(l)
        # nothing should raise
        comb._check_consistency()

        # incompatible unit should raise
        comb._images[3].unit = 'm'
        with pytest.raises(ValueError, match='.* unit incompatible .*'):
            comb._check_consistency()
        comb._images[3].unit = 'adu'

        # incompatible shape should raise
        comb._images[4].data = np.ones((2, 2))
        with pytest.raises(ValueError, match='.* shape incompatible .*'):
            comb._check_consistency()
예제 #17
0
 def test_error_unkown_algorithm(self):
     with pytest.raises(ValueError, match='Algorithm noexisting unknown.'):
         register_framedata_list([FrameData(None) for i in range(10)],
                                 algorithm='noexisting')
예제 #18
0
def test_invalid_shapes():
    frame1 = FrameData(np.zeros((10, 10)), unit='')
    frame2 = FrameData(np.zeros((5, 5)), unit='')
    with pytest.raises(ValueError):
        imarith(frame1, frame2, '+')
예제 #19
0
def test_invalid_op():
    frame1 = FrameData(np.zeros((10, 10)), unit='')
    frame2 = FrameData(np.zeros((10, 10)), unit='')
    with pytest.raises(ValueError) as exc:
        imarith(frame1, frame2, 'not an op')
        check.is_in('not supported', str(exc.value))
예제 #20
0
    def test_chunk_yielder_f32(self):
        # using float32, the number of chunks are almost halved
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, unit='adu') for i in range(n)]
        # data size = 4 000 000 = 4 bytes * 100 * 100 * 100
        # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100
        # total size = 5 000 000

        comb = ImCombiner(max_memory=1e6, dtype=np.float32)
        comb._load_images(l)

        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        # for median, tot_size=5*4.5=22.5
        # xstep = 4, so n_chuks=25
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (4, 100))
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 25)
        assert_in('Splitting the images into 25 chunks.', logs)
        logs.clear()

        # for mean and sum, tot_size=5*3=15
        # xstep = 6, so n_chunks=16+1
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='mean'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(6, 100), (4, 100)])
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 17)
        assert_in('Splitting the images into 17 chunks.', logs)
        logs.clear()

        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(6, 100), (4, 100)])
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 17)
        assert_in('Splitting the images into 17 chunks.', logs)
        logs.clear()

        # this should not split into chunks
        comb = ImCombiner(max_memory=1e8, dtype=np.float32)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (100, 100))
                assert_almost_equal(k, d)
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 1)
        assert_equal(len(logs), 0)
        logs.clear()

        # this should split in 300 chunks!
        # total_size = 4.5*5e6=22.5e6 = 225 chunks
        # x_step = 1
        # y_step = 45
        comb = ImCombiner(max_memory=1e5, dtype=np.float32)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_in(k.shape, ((1, 45), (1, 10)))
                assert_almost_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 300)
        assert_in('Splitting the images into 300 chunks.', logs)
        logs.clear()

        logger.setLevel(level)
        logger.removeHandler(lh)
예제 #21
0
 def test_error_incompatible_shapes(self):
     frame_list = [FrameData(np.zeros((i + 1, i + 1))) for i in range(10)]
     with pytest.raises(ValueError, match='incompatible shapes'):
         register_framedata_list(frame_list)
예제 #22
0
def test_simple_dark(inplace):
        
    frame4dark = FrameData(np.ones((20, 20))*3, unit='adu')
    
    master_dark0 = FrameData(np.zeros((20,20)),unit='adu')
    master_dark0.data[0:5, 0:4] = 0.5
    master_dark1 = FrameData(np.ones((20,20)),unit=None)
    master_dark1.data[0:5, 0:4] = 1.5
    master_dark5 = FrameData(np.ones((20,20))*5,unit='adu')
    master_dark5.data[0:5, 0:4] = 5.5

    exposure1 = 1.0
    exposure2 = 1.2
    
    res5_zeros = subtract_dark(frame4dark, master_dark0, exposure1, exposure1,
                               inplace = inplace)
    res5_ones = subtract_dark(frame4dark, master_dark1, exposure1, exposure1,
                              inplace = inplace)
    res5_fives = subtract_dark(frame4dark, master_dark5, exposure1, exposure1,
                               inplace = inplace)
    res5_scaled = subtract_dark(frame4dark, master_dark1, exposure1, exposure2,
                                inplace = inplace)
    
    exptd4zeros = np.ones((20, 20))*(3-0)
    exptd4zeros[0:5, 0:4] = 3.0 - 0.5
    exptd4ones = np.ones((20, 20))*(3-1)
    exptd4ones[0:5, 0:4] = 3.0 - 1.5
    exptd4fives = np.ones((20, 20))*(3-5)
    exptd4fives[0:5, 0:4] = 3.0 - 5.5
    
    exptd4scaled = np.ones((20, 20))*(3-1*exposure2/exposure1)
    exptd4scaled[0:5, 0:4] = 3.0 - 1.5*exposure2/exposure1
    
    ## Checking with the Ones matrix: ------------------------------------------
    check.is_true(isinstance(res5_ones, FrameData))
    npt.assert_array_equal(res5_ones.data, exptd4ones)
    check.equal(res5_ones.header['hierarch astropop dark_corrected'], True)
    check.equal(res5_ones.header['hierarch astropop dark_corrected_scale'],
                1.0)
    
    # # Checking dark-subtracted frame unit:
    # check.equal(res5_ones.unit, u.Unit('adu'))
    
    # Check inplace statement:
    if inplace:
        check.is_true(res5_ones.data is frame4dark.data)
    else:
        check.is_false(res5_ones.data is frame4dark.data) 
    
    ## Checking with the Zeros matrix: -----------------------------------------
    check.is_true(isinstance(res5_zeros, FrameData))
    npt.assert_array_equal(res5_zeros.data, exptd4zeros)
    check.equal(res5_zeros.header['hierarch astropop dark_corrected'], True)
    check.equal(res5_zeros.header['hierarch astropop dark_corrected_scale'],
                1.0)
    
    # # Checking dark-subtracted frame unit:
    # check.equal(res5_zeros.unit, u.Unit('adu'))
    
    ## Checking with the Fives matrix (master dark masking the signal): -------
    check.is_true(isinstance(res5_fives, FrameData))
    npt.assert_array_equal(res5_fives.data, exptd4fives)
    check.equal(res5_fives.header['hierarch astropop dark_corrected'], True)
    check.equal(res5_fives.header['hierarch astropop dark_corrected_scale'],
                1.0)
    
    # # Checking dark-subtracted frame unit:
    # check.equal(res5_fives.unit, u.Unit('adu'))    
    
    # ## Checking with Scaled Exposure: -----------------------------------------
    # check.is_true(isinstance(res5_scaled, FrameData))
    # npt.assert_array_equal(res5_scaled.data, exptd4scaled)
    # check.equal(res5_scaled.header['hierarch astropop dark_corrected'], True)
    # check.equal(res5_scaled.header['hierarch astropop dark_corrected_scale'],
    #             exposure2/exposure1)
    

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
예제 #23
0
    def test_chunk_yielder_f64(self):
        n = 100
        d = np.random.random((100, 100)).astype(np.float64)
        l = [FrameData(d, unit='adu') for i in range(n)]
        # data size = 8 000 000 = 8 bytes * 100 * 100 * 100
        # mask size = 1 000 000 = 1 bytes * 100 * 100 * 100
        # total size = 9 000 000

        comb = ImCombiner(max_memory=1e6, dtype=np.float64)
        comb._load_images(l)

        logs = []
        lh = log_to_list(logger, logs, False)
        level = logger.getEffectiveLevel()
        logger.setLevel('DEBUG')

        # for median, tot_size=9*4.5=41
        # xstep = 2, so n_chuks=50
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (2, 100))
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 50)
        assert_in('Splitting the images into 50 chunks.', logs)
        logs.clear()

        # for mean and sum, tot_size=9*3=27
        # xstep = 3, so n_chunks=33+1
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='mean'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(3, 100), (1, 100)])
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 34)
        assert_in('Splitting the images into 34 chunks.', logs)
        logs.clear()

        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='sum'):
            i += 1
            for k in chunk:
                assert_in(k.shape, [(3, 100), (1, 100)])
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 34)
        assert_in('Splitting the images into 34 chunks.', logs)
        logs.clear()

        # this should not split into chunks
        comb = ImCombiner(max_memory=1e8)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (100, 100))
                assert_equal(k, d)
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 1)
        assert_equal(len(logs), 0)
        logs.clear()

        # this should split in 400 chunks!
        comb = ImCombiner(max_memory=1e5)
        comb._load_images(l)
        i = 0
        for chunk, unct, slc in comb._chunk_yielder(method='median'):
            i += 1
            for k in chunk:
                assert_equal(k.shape, (1, 25))
                assert_equal(k, d[slc])
                assert_is_none(unct)
                assert_is_instance(k, np.ma.MaskedArray)
        assert_equal(i, 400)
        assert_in('Splitting the images into 400 chunks.', logs)
        logs.clear()

        logger.setLevel(level)
        logger.removeHandler(lh)