def _pvobs(self): '''calculates position and velocity of the observatory returns position/velocity in AU and AU/d in GCRS reference frame ''' # convert obs position from WGS84 (lat long) to ITRF geocentric coords in AU xyz = self.location.to(u.AU).value # now we need to convert this position to Celestial Coords # specifically, the GCRS coords. # conversion from celestial to terrestrial coords given by # [TRS] = RPOM * R_3(ERA) * RC2I * [CRS] # where: # [CRS] is vector in GCRS (geocentric celestial system) # [TRS] is vector in ITRS (International Terrestrial Ref System) # ERA is earth rotation angle # RPOM = polar motion matrix tt = self.tt mjd = self.utc.mjd # we need the IERS values to correct for the precession/nutation of the Earth iers_tab = IERS.open() # Find UT1, which is needed to calculate ERA # uses IERS_B by default , for more recent times use IERS_A download try: ut1 = self.ut1 except: try: iers_a_file = download_file(IERS_A_URL, cache=True) iers_a = IERS_A.open(iers_a_file) print "Trying to download...", iers_a_file self.delta_ut1_utc = self.get_delta_ut1_utc(iers_a) ut1 = self.ut1 except: # fall back to UTC with degraded accuracy warnings.warn('Cannot calculate UT1: using UTC with degraded accuracy') ut1 = self.utc # Gets x,y coords of Celestial Intermediate Pole (CIP) and CIO locator s # CIO = Celestial Intermediate Origin # Both in GCRS X,Y,S = erfa.xys00a(tt.jd1,tt.jd2) # Get dX and dY from IERS B dX = np.interp(mjd, iers_tab['MJD'], iers_tab['dX_2000A']) * u.arcsec dY = np.interp(mjd, iers_tab['MJD'], iers_tab['dY_2000A']) * u.arcsec # Get GCRS to CIRS matrix # can be used to convert to Celestial Intermediate Ref Sys # from GCRS. rc2i = erfa.c2ixys(X+dX.to(u.rad).value, Y+dY.to(u.rad).value, S) # Gets the Terrestrial Intermediate Origin (TIO) locator s' # Terrestrial Intermediate Ref Sys (TIRS) defined by TIO and CIP. # TIRS related to to CIRS by Earth Rotation Angle sp = erfa.sp00(tt.jd1,tt.jd2) # Get X and Y from IERS B # X and Y are xp = np.interp(mjd, iers_tab['MJD'], iers_tab['PM_x']) * u.arcsec yp = np.interp(mjd, iers_tab['MJD'], iers_tab['PM_y']) * u.arcsec # Get the polar motion matrix. Relates ITRF to TIRS. rpm = erfa.pom00(xp.to(u.rad).value, yp.to(u.rad).value, sp) # multiply ITRF position of obs by transpose of polar motion matrix # Gives Intermediate Ref Frame position of obs x,y,z = np.array([rpmMat.T.dot(xyz) for rpmMat in rpm]).T # Functions of Earth Rotation Angle, theta # Theta is angle bewtween TIO and CIO (along CIP) # USE UT1 here. theta = erfa.era00(ut1.jd1,ut1.jd2) S,C = np.sin(theta),np.cos(theta) # Position #GOT HERE pos = np.asarray([C*x - S*y, S*x + C*y, z]).T # multiply by inverse of GCRS to CIRS matrix # different methods for scalar times vs arrays if pos.ndim > 1: pos = np.array([np.dot(rc2i[j].T,pos[j]) for j in range(len(pos))]) else: pos = np.dot(rc2i.T,pos) # Velocity vel = np.asarray([SR*(-S*x - C*y), SR*(C*x-S*y), np.zeros_like(x)]).T # multiply by inverse of GCRS to CIRS matrix if vel.ndim > 1: vel = np.array([np.dot(rc2i[j].T,vel[j]) for j in range(len(pos))]) else: vel = np.dot(rc2i.T,vel) #return position and velocity return pos,vel
def gcrs2irts_matrix_b(t, eop): """ Ref: http://www.iausofa.org/sofa_pn_c.pdf Purpose: This function calculates the cartesian transformation matrix for transforming GCRS to ITRS or vice versa :param eop: eop is a dataframe containing the Earth Orientation Parameters as per IAU definitions :param t: t is a datetime object or a list of datetime objects with the UTC times for the transformation matrix to be calculated for :return: matrix is a [3,3] numpy array or list of arrays used for transforming GCRS to ITRS or vice versa at the specified times; ITRS = matrix @ GCRS """ if not (isinstance(t, Iterable)): t = [t] matrix = [] for ti in t: year = ti.year month = ti.month day = ti.day hour = ti.hour minute = ti.minute second = ti.second # TT (MJD). */ djmjd0, date = erfa.cal2jd(iy=year, im=month, id=day) # jd = djmjd0 + date day_frac = (60.0 * (60.0 * hour + minute) + second) / DAYSEC utc = date + day_frac Dat = erfa.dat(year, month, day, day_frac) tai = utc + Dat / DAYSEC tt = tai + 32.184 / DAYSEC # UT1. */ dut1 = eop["UT1-UTC"][date] * ( 1 - day_frac) + eop["UT1-UTC"][date + 1] * day_frac tut = day_frac + dut1 / DAYSEC # ut1 = date + tut # CIP and CIO, IAU 2006/2000A. */ x, y, s = erfa.xys06a(djmjd0, tt) # X, Y offsets dx06 = (eop["dX"][date] * (1 - day_frac) + eop["dX"][date + 1] * day_frac) * DAS2R dy06 = (eop["dY"][date] * (1 - day_frac) + eop["dY"][date + 1] * day_frac) * DAS2R # Add CIP corrections. */ x = x + dx06 y = y + dy06 # GCRS to CIRS matrix. */ rc2i = erfa.c2ixys(x, y, s) # Earth rotation angle. */ era = erfa.era00(djmjd0 + date, tut) # Form celestial-terrestrial matrix (no polar motion yet). */ rc2ti = erfa.cr(rc2i) rc2ti = eraRZ(era, rc2ti) #rc2ti = erfa.rz(era, rc2ti) # Polar motion matrix (TIRS->ITRS, IERS 2003). */ xp = (eop["x"][date] * (1 - day_frac) + eop["x"][date + 1] * day_frac) * DAS2R yp = (eop["y"][date] * (1 - day_frac) + eop["y"][date + 1] * day_frac) * DAS2R rpom = erfa.pom00(xp, yp, erfa.sp00(djmjd0, tt)) # Form celestial-terrestrial matrix (including polar motion). */ rc2it = erfa.rxr(rpom, rc2ti) matrix.append(rc2it) if len(matrix) == 1: matrix = matrix[0] return matrix
def _pvobs(self): '''calculates position and velocity of the observatory returns position/velocity in AU and AU/d in GCRS reference frame ''' # convert obs position from WGS84 (lat long) to ITRF geocentric coords in AU xyz = self.location.to(u.AU).value # now we need to convert this position to Celestial Coords # specifically, the GCRS coords. # conversion from celestial to terrestrial coords given by # [TRS] = RPOM * R_3(ERA) * RC2I * [CRS] # where: # [CRS] is vector in GCRS (geocentric celestial system) # [TRS] is vector in ITRS (International Terrestrial Ref System) # ERA is earth rotation angle # RPOM = polar motion matrix tt = self.tt mjd = self.utc.mjd # we need the IERS values to correct for the precession/nutation of the Earth iers_tab = IERS.open() # Find UT1, which is needed to calculate ERA # uses IERS_B by default , for more recent times use IERS_A download try: ut1 = self.ut1 except: try: iers_a_file = download_file(IERS_A_URL, cache=True) iers_a = IERS_A.open(iers_a_file) self.delta_ut1_utc = self.get_delta_ut1_utc(iers_a) ut1 = self.ut1 except: # fall back to UTC with degraded accuracy warnings.warn( 'Cannot calculate UT1: using UTC with degraded accuracy') ut1 = self.utc # Gets x,y coords of Celestial Intermediate Pole (CIP) and CIO locator s # CIO = Celestial Intermediate Origin # Both in GCRS X, Y, S = erfa.xys00a(tt.jd1, tt.jd2) # Get dX and dY from IERS B dX = np.interp(mjd, iers_tab['MJD'], iers_tab['dX_2000A']) * u.arcsec dY = np.interp(mjd, iers_tab['MJD'], iers_tab['dY_2000A']) * u.arcsec # Get GCRS to CIRS matrix # can be used to convert to Celestial Intermediate Ref Sys # from GCRS. rc2i = erfa.c2ixys(X + dX.to(u.rad).value, Y + dY.to(u.rad).value, S) # Gets the Terrestrial Intermediate Origin (TIO) locator s' # Terrestrial Intermediate Ref Sys (TIRS) defined by TIO and CIP. # TIRS related to to CIRS by Earth Rotation Angle sp = erfa.sp00(tt.jd1, tt.jd2) # Get X and Y from IERS B # X and Y are xp = np.interp(mjd, iers_tab['MJD'], iers_tab['PM_x']) * u.arcsec yp = np.interp(mjd, iers_tab['MJD'], iers_tab['PM_y']) * u.arcsec # Get the polar motion matrix. Relates ITRF to TIRS. rpm = erfa.pom00(xp.to(u.rad).value, yp.to(u.rad).value, sp) # multiply ITRF position of obs by transpose of polar motion matrix # Gives Intermediate Ref Frame position of obs x, y, z = np.array([rpmMat.T.dot(xyz) for rpmMat in rpm]).T # Functions of Earth Rotation Angle, theta # Theta is angle bewtween TIO and CIO (along CIP) # USE UT1 here. theta = erfa.era00(ut1.jd1, ut1.jd2) S, C = np.sin(theta), np.cos(theta) # Position #GOT HERE pos = np.asarray([C * x - S * y, S * x + C * y, z]).T # multiply by inverse of GCRS to CIRS matrix # different methods for scalar times vs arrays if pos.ndim > 1: pos = np.array( [np.dot(rc2i[j].T, pos[j]) for j in range(len(pos))]) else: pos = np.dot(rc2i.T, pos) # Velocity vel = np.asarray( [SR * (-S * x - C * y), SR * (C * x - S * y), np.zeros_like(x)]).T # multiply by inverse of GCRS to CIRS matrix if vel.ndim > 1: vel = np.array( [np.dot(rc2i[j].T, vel[j]) for j in range(len(pos))]) else: vel = np.dot(rc2i.T, vel) #return position and velocity return pos, vel
def gcrs_posvel_from_itrf(loc, toas, obsname="obs"): """Return a list of PosVel instances for the observatory at the TOA times. Observatory location should be given in the loc argument as an astropy EarthLocation object. This location will be in the ITRF frame (i.e. co-rotating with the Earth). The optional obsname argument will be used as label in the returned PosVel instance. This routine returns a list of PosVel instances, containing the positions (m) and velocities (m / s) at the times of the toas and referenced to the Earth-centered Inertial (ECI, aka GCRS) coordinates. This routine is basically SOFA's pvtob() [Position and velocity of a terrestrial observing station] with an extra rotation from c2ixys() [Form the celestial to intermediate-frame-of-date matrix given the CIP X,Y and the CIO locator s]. """ unpack = False # If the input is a single TOA (i.e. a row from the table), # then put it into a list if type(toas) == table.row.Row: ttoas = Time([toas["mjd"]]) unpack = True elif type(toas) == table.table.Table: ttoas = toas["mjd"] elif isinstance(toas, Time): if toas.isscalar: ttoas = Time([toas]) unpack = True else: ttoas = toas else: if np.isscalar(toas): ttoas = Time([toas], format="mjd") unpack = True else: ttoas = toas N = len(ttoas) if len(ttoas.shape) != 1: raise ValueError("At most one-dimensional array of times possible, " "shape was {}".format(ttoas.shape)) # Get various times from the TOAs as arrays tts = np.asarray([(t.jd1, t.jd2) for t in ttoas.tt]).T ut1s = np.asarray([(t.jd1, t.jd2) for t in ttoas.ut1]).T mjds = np.asarray(ttoas.mjd) iers_b = get_iers_b_up_to_date(mjds.max()) # Get x, y coords of Celestial Intermediate Pole and CIO locator s X, Y, S = erfa.xys00a(*tts) # Get dX and dY from IERS A in arcsec and convert to radians # dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A_B']) * asec2rad # dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A_B']) * asec2rad # Get dX and dY from IERS B in arcsec and convert to radians dX = np.interp(mjds, iers_b["MJD"].to_value(u.d), iers_b["dX_2000A"].to_value(u.rad)) dY = np.interp(mjds, iers_b["MJD"].to_value(u.d), iers_b["dY_2000A"].to_value(u.rad)) # Get GCRS to CIRS matrices rc2i = erfa.c2ixys(X + dX, Y + dY, S) # Gets the TIO locator s' sp = erfa.sp00(*tts) # Get X and Y from IERS A in arcsec and convert to radians # xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_X_B']) * asec2rad # yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_Y_B']) * asec2rad # Get X and Y from IERS B in arcsec and convert to radians xp = np.interp(mjds, iers_b["MJD"].to_value(u.d), iers_b["PM_x"].to_value(u.rad)) yp = np.interp(mjds, iers_b["MJD"].to_value(u.d), iers_b["PM_y"].to_value(u.rad)) # Get the polar motion matrices rpm = erfa.pom00(xp, yp, sp) # Observatory geocentric coords in m xyzm = np.array([a.to_value(u.m) for a in loc.geocentric]) x, y, z = np.dot(xyzm, rpm).T # Functions of Earth Rotation Angle theta = erfa.era00(*ut1s) s, c = np.sin(theta), np.cos(theta) sx, cx = s * x, c * x sy, cy = s * y, c * y # Initial positions and velocities iposs = np.asarray([cx - sy, sx + cy, z]).T ivels = np.asarray([OM * (-sx - cy), OM * (cx - sy), np.zeros_like(x)]).T # There is probably a way to do this with np.einsum or something... # and here it is . poss = np.empty((N, 3), dtype=np.float64) vels = np.empty((N, 3), dtype=np.float64) poss = np.einsum("ij,ijk->ik", iposs, rc2i) vels = np.einsum("ij,ijk->ik", ivels, rc2i) r = PosVel(poss.T * u.m, vels.T * u.m / u.s, obj=obsname, origin="earth") if unpack: return r[0] else: return r