def convolve_models(model, kernel, mode='convolve_fft', **kwargs): """ Convolve two models using `~astropy.convolution.convolve_fft`. Parameters ---------- model : `~astropy.modeling.core.Model` Functional model kernel : `~astropy.modeling.core.Model` Convolution kernel mode : str Keyword representing which function to use for convolution. * 'convolve_fft' : use `~astropy.convolution.convolve_fft` function. * 'convolve' : use `~astropy.convolution.convolve`. **kwargs : dict Keyword arguments to me passed either to `~astropy.convolution.convolve` or `~astropy.convolution.convolve_fft` depending on ``mode``. Returns ------- default : `~astropy.modeling.core.CompoundModel` Convolved model """ if mode == 'convolve_fft': operator = SPECIAL_OPERATORS.add('convolve_fft', partial(convolve_fft, **kwargs)) elif mode == 'convolve': operator = SPECIAL_OPERATORS.add('convolve', partial(convolve, **kwargs)) else: raise ValueError(f'Mode {mode} is not supported.') return CompoundModel(operator, model, kernel)
def test_fix_inputs_invalid(): g1 = Gaussian2D(1, 0, 0, 1, 2) with pytest.raises(ValueError): fix_inputs(g1, {'x0': 0, 0: 0}) with pytest.raises(ValueError): fix_inputs(g1, (0, 1)) with pytest.raises(ValueError): fix_inputs(g1, {3: 2}) with pytest.raises(ValueError): fix_inputs(g1, {np.int32(3): 2}) with pytest.raises(ValueError): fix_inputs(g1, {np.int64(3): 2}) with pytest.raises(ValueError): fix_inputs(g1, {'w': 2}) with pytest.raises(ModelDefinitionError): CompoundModel('#', g1, g1) with pytest.raises(ValueError): gg1 = fix_inputs(g1, {0: 1}) gg1(2, y=2) with pytest.raises(ValueError): gg1 = fix_inputs(g1, {np.int32(0): 1}) gg1(2, y=2) with pytest.raises(ValueError): gg1 = fix_inputs(g1, {np.int64(0): 1}) gg1(2, y=2)
def from_tree_tagged(cls, node, ctx): tag = node._tag[node._tag.rfind('/') + 1:] tag = tag[:tag.rfind('-')] oper = _tag_to_method_mapping[tag] left = node['forward'][0] if not isinstance(left, Model): raise TypeError(f"Unknown model type '{node['forward'][0]._tag}'") right = node['forward'][1] if (not isinstance(right, Model) and not (oper == 'fix_inputs' and isinstance(right, dict))): raise TypeError(f"Unknown model type '{node['forward'][1]._tag}'") if oper == 'fix_inputs': right = dict(zip(right['keys'], right['values'])) model = CompoundModel('fix_inputs', left, right) else: model = getattr(left, oper)(right) return cls._from_tree_base_transform_members(model, node, ctx)
def from_tree_transform(self, node): tag = node._tag[node._tag.rfind('/') + 1:] tag = tag[:tag.rfind('-')] oper = _tag_to_method_mapping[tag] left = node['forward'][0] if not isinstance(left, Model): raise TypeError("Unknown model type '{0}'".format( node['forward'][0]._tag)) right = node['forward'][1] if (not isinstance(right, Model) and not (oper == 'fix_inputs' and isinstance(right, dict))): raise TypeError("Unknown model type '{0}'".format( node['forward'][1]._tag)) if oper == 'fix_inputs': right = dict(zip(right['keys'], right['values'])) model = CompoundModel('fix_inputs', left, right) else: model = getattr(left, oper)(right) return model
def from_tree_tagged(cls, node, ctx): tag = node._tag[node._tag.rfind('/') + 1:] tag = tag[:tag.rfind('-')] oper = _tag_to_method_mapping[tag] left = yamlutil.tagged_tree_to_custom_tree(node['forward'][0], ctx) if not isinstance(left, Model): raise TypeError("Unknown model type '{0}'".format( node['forward'][0]._tag)) right = yamlutil.tagged_tree_to_custom_tree(node['forward'][1], ctx) if not isinstance(right, Model) and \ not (oper == 'fix_inputs' and isinstance(right, dict)): raise TypeError("Unknown model type '{0}'".format( node['forward'][1]._tag)) if oper == 'fix_inputs': right = dict(zip(right['keys'], right['values'])) model = CompoundModel('fix_inputs', left, right) else: model = getattr(left, oper)(right) model = cls._from_tree_base_transform_members(model, node, ctx) model.map_parameters() return model
def from_yaml_tree_transform(self, node, tag, ctx): from astropy.modeling.core import Model, CompoundModel oper = _TAG_NAME_TO_MODEL_METHOD[tag.rsplit("/", 1)[-1].rsplit("-", 1)[0]] left = node["forward"][0] if not isinstance(left, Model): raise TypeError("Unknown model type '{0}'".format( node["forward"][0]._tag)) right = node["forward"][1] if (not isinstance(right, Model) and not (oper == "fix_inputs" and isinstance(right, dict))): raise TypeError("Unknown model type '{0}'".format( node["forward"][1]._tag)) if oper == "fix_inputs": right = dict(zip(right["keys"], right["values"])) model = CompoundModel("fix_inputs", left, right) else: model = getattr(left, oper)(right) return model