예제 #1
0
import astropy.io.fits as iofits
from scipy.stats import norm
from astropy.modeling import models, fitting  #A

# Params
fmax, fmin, nbin = 3000, 0, 300  #A

fits = iofits.open('data/fits/fpC-001729-r3-0083.fit.gz')
img = fits[0].data
param = norm.fit(img.flatten())
print(param[0], param[1])

print('中央値:{}, 平均値:{}'.format(np.median(img), img.mean()))
x = np.linspace(fmin, fmax, nbin + 1) + (fmax - fmin) / nbin / 2  #A
x = x[:-1]  #A
pdf_fitted = norm.pdf(x, loc=param[0], scale=param[1])  #A

fit = fitting.LevMarLSQFitter()  #A
gauss_init = models.Gaussian1D(mean=x[np.argmax(pdf_fitted)],
                               stddev=100,
                               amplitude=max(pdf_fitted))  #A
result = fit(gauss_init, x, pdf_fitted)  #A
print(result, result.mean[0])

print(gauss_init)

plt.plot(x, pdf_fitted, 'r-')
plt.plot(x, result(x), 'b.')
plt.xlim([0, fmax])  #A
plt.show()
예제 #2
0
def find_source(im,
                guesspos=None,
                searchbox=None,
                fitbox=None,
                guessmeth='max',
                smooth=0,
                searchsmooth=3,
                guessFWHM=None,
                guessamp=None,
                guessbg=None,
                method='fast',
                sign=1,
                verbose=False,
                fixFWHM=False,
                fixpos=False,
                minamp=0.01,
                maxamp=None,
                plot=False,
                maxFWHM=None,
                minFWHM=None,
                posradius=None,
                silent=False):
    """
    find the point source in an image and provide its best fit parameters from
    a Gaussian fit
    Parameters:
        - im: image to be searched
        - guesspos: 2D array with the (y, x) guessed position for the point
                    source position. If None, use the middle of the whole image
        - searchbox: int or 2D array with (y, x) size, size of box to be
                     searched centered on the guesspos. If None, search the
                     whole image
        - fitbox: int or 2D array with (y, x) size, size of box used for the
                  fit. If None, use searchbox
        - guessmeth: method for guesstimating the point source position
                     (currently only 'max' and other). For 'max' use the
                     maximum brightness pixel in the searchbox. Other: use
                     centre of the searchbox
        - smooth: optional smoothing with a Gaussian. The value specifies the
                  width of the Gaussian used for the smoothing
        - searchsmooth: optional smoothing only for guesstimating source
                        position
        - guessFWHM: guess for the FWHM of the source. If None, use middle
                     between minFWHM and maxFWHM or 5 if the former are not
                     provided
        - guessamp: guess for the amplitude of the source. If None, use the
                    pixel brightness at the guess position
        - guessbg: guess for the background level in the image. If None, use
                   the median of the image.
        - method: method used for the fitting: 'fast': use LevMarLSQFitter
                  from astropy, 'mpfit': use the MPFIT package
        - sign:   sign of the point source to be searched
        - fixFWHM: fix the FWHM of the source to the guess value
        - fixpos: fix the position of the source to the guess value
        - minamp, maxamp: minimum and maximum allowed values for the amplitude
                          of the source
        - minFWHM, maxFWHM: minimum and maximum allowed values for the FWHM
                            of the source
        - posradius: maximum allowed radius in pix around the guess position
                     for the source location. If None, the whole searchbox is
                     allowed

    """

    s2f = (2.0 * np.sqrt(2.0 * np.log(2.0)))
    f2s = 1.0 / s2f

    s = np.shape(im)

    if sign < 0:
        im = -im

    if smooth > 0:
        im = gaussian_filter(im, sigma=smooth)

    if guesspos is None:
        guesspos = 0.5 * np.array(s)

    if verbose:
        print("GET_POINTSOURCE: method: ", method)
        print("GET_POINTSOURCE: s: ", s)
        print("GET_POINTSOURCE: sign: ", sign)
        print("GET_POINTSOURCE: searchsmooth: ", searchsmooth)
        print("GET_POINTSOURCE: guessmeth: ", guessmeth)
        print("GET_POINTSOURCE: initial guessamp: ", guessamp)
        print("GET_POINTSOURCE: initial guessbg: ", guessbg)
        print("GET_POINTSOURCE: intial guesspos: ", guesspos)
        print("GET_POINTSOURCE: intial searchbox: ", searchbox)

    # --- define the search box
    if searchbox is not None:

        # test if the box provided is an integer, in which case blow up to array
        if not hasattr(searchbox, "__len__"):
            searchbox = np.array([searchbox, searchbox])

        searchbox = np.array(searchbox, dtype=int)

        sx0 = np.max([0, int(np.round(guesspos[1] - 0.5 * searchbox[1]))])
        sx1 = np.min([s[1], int(np.round(guesspos[1] + 0.5 * searchbox[1]))])
        sy0 = np.max([0, int(np.round(guesspos[0] - 0.5 * searchbox[0]))])
        sy1 = np.min([s[0], int(np.round(guesspos[0] + 0.5 * searchbox[0]))])
        searchim = im[sy0:sy1, sx0:sx1]

        if verbose:
            print("GET_POINTSOURCE: sy0, sy1, sx0, sx1 ", sy0, sy1, sx0, sx1)
        searchbox = np.array(np.shape(searchim))

        # print("GET_POINTSOURCE: ss: ", np.shape(searchim))

    else:
        searchbox = np.array(s, dtype=int)
        sx0 = 0
        sy0 = 0
        searchim = im

    if verbose:
        print("GET_POINTSOURCE: final searchbox: ", searchbox)

    # --- should the first guess be based on the max or on the position?
    if guessmeth == 'max':
        if searchsmooth > 0:
            # smoothing is quick and thus on by default
            ssim = gaussian_filter(searchim,
                                   sigma=searchsmooth,
                                   mode='nearest')

            guesspos = np.array(np.unravel_index(np.nanargmax(ssim),
                                                 searchbox))

            if plot is True:
                plt.figure(1, figsize=(3, 3))
                plt.imshow(ssim, origin='bottom', interpolation='nearest')
                plt.title('Smoothed Search image')
                plt.show()

            # print("GET_POINTSOURCE: guesspos: ", guesspos)

        else:
            guesspos = np.array(
                np.unravel_index(np.nanargmax(searchim), searchbox))

    else:
        guesspos = 0.5 * searchbox

    if verbose:
        print("GET_POINTSOURCE: guesspos in searchbox: ", guesspos)
        print("GET_POINTSOURCE: guesspos in total image: ", guesspos[0] + sy0,
              guesspos[1] + sx0)
    # print("GET_POINTSOURCE: guesspos: ", guesspos)

    guesspos = np.array([guesspos[0] + sy0, guesspos[1] + sx0])

    if plot is True:
        plt.clf()
        plt.close(1)
        plt.figure(1, figsize=(3, 3))
        plt.imshow(searchim, origin='bottom', interpolation='nearest')
        plt.title('Search image')
        plt.show()

    if verbose:
        print("GET_POINTSOURCE: intial fitbox: ", fitbox)

    # --- define the fit box
    if fitbox is not None:

        # test if the box provided is an integer, in which case blow up to array
        if not hasattr(fitbox, "__len__"):
            fitbox = np.array([fitbox, fitbox])

        fitbox = np.array(fitbox, dtype=int)
        fx0 = int(np.round(guesspos[1] - 0.5 * fitbox[1]))
        fx1 = int(np.round(guesspos[1] + 0.5 * fitbox[1]))
        fy0 = int(np.round(guesspos[0] - 0.5 * fitbox[0]))
        fy1 = int(np.round(guesspos[0] + 0.5 * fitbox[0]))

        guesspos = 0.5 * fitbox
        # print('guesspos, fx0, fx1, fy0, fy1 ', guesspos, fx0, fx1, fy0, fy1)

        # for the new guess position, we have to take into account if the
        # fitbox is smaller than expected because being close to the edge

        if fx0 < 0:
            guesspos[1] = guesspos[1] + fx0
            fx0 = 0

#        if fx1 > s[1]:
#            guesspos[1] = guesspos[1] - (fx1 - s[1])
#            fx1 = s[1]

        if fy0 < 0:
            guesspos[0] = guesspos[0] + fy0
            fy0 = 0

#        if fy1 > s[0]:
#            guesspos[0] = guesspos[0] - (fy1 - s[0])
#            fy1 = s[0]

        fitim = im[fy0:fy1, fx0:fx1]
        fs = np.array(np.shape(fitim))

    else:
        fitim = im
        fx0 = 0
        fy0 = 0

    fs = np.shape(fitim)
    fitbox = fs

    if verbose:
        print("GET_POINTSOURCE: final fitbox: ", fitbox)
        print("GET_POINTSOURCE: final guesspos in fitbox: ", guesspos)

    if plot is True:
        plt.figure(1, figsize=(3, 3))
        plt.imshow(fitim, origin='bottom', interpolation='nearest')
        plt.title('(Sub)image to be fitted')
        plt.show()

    if guessFWHM is None:
        if maxFWHM is not None and minFWHM is not None:
            guessFWHM = 0.5 * (maxFWHM + minFWHM)
        elif maxFWHM is not None:
            guessFWHM = 0.5 * maxFWHM
        elif minFWHM is not None:
            guessFWHM = 2 * minFWHM
        else:
            guessFWHM = 5

    # --- estimate the BG with ignoring central source (use either 3*FWHM or
    #     80% of image whatever is smaller). First generate a background image
    #     of sufficient size
    bgbox = int(np.round(6 * guessFWHM))

    if verbose:
        print('bgbox:', bgbox)
        print("bgcenpos: ", [fy0 + 0.5 * fitbox[0], fx0 + 0.5 * fitbox[1]])

    bgim = _crop_image(im,
                       box=bgbox,
                       cenpos=[fy0 + 0.5 * fitbox[0], fx0 + 0.5 * fitbox[1]],
                       exact=False)

    ignore_aper = np.min([3 * guessFWHM, 0.8 * np.max(s)])
    bgval, bgstd = _measure_bkg(bgim, ignore_aper=ignore_aper)

    if guessbg is None:
        guessbg = bgval

    if guessamp is None:
        guessamp = fitim[int(guesspos[0]), int(guesspos[1])] - guessbg

    if maxFWHM is None:
        maxFWHM = np.max(s)

    if minFWHM is None:
        minFWHM = 1

    maxsigma = maxFWHM * f2s
    minsigma = minFWHM * f2s

    if posradius is not None:
        minx = guesspos[1] - posradius
        maxx = guesspos[1] + posradius
        miny = guesspos[0] - posradius
        maxy = guesspos[0] + posradius
    else:
        minx = 0
        maxx = fs[1]
        miny = 0
        maxy = fs[0]

    sigma = guessFWHM * f2s
    guess = [guessbg, guessamp, guesspos[1], guesspos[0], sigma, sigma, 0]

    if verbose:
        print(' - GET_POINTSOURCE: Guess: ', guess)
        print(' - GET_POINTSOURCE: minFWHM: ', minFWHM)
        print(' - GET_POINTSOURCE: maxFWHM: ', maxFWHM)
        print(' - GET_POINTSOURCE: minsigma: ', minsigma)
        print(' - GET_POINTSOURCE: maxsigma: ', maxsigma)
        print(' - GET_POINTSOURCE: minamp: ', minamp)
        print(' - GET_POINTSOURCE: maxamp: ', maxamp)
        print(' - GET_POINTSOURCE: minx,maxx, miny,maxy: ', minx, maxx, miny,
              maxy)

    y, x = np.mgrid[:fs[0], :fs[1]]

    g_init = models.Gaussian2D(amplitude=guessamp,
                               x_mean=guesspos[1],
                               y_mean=guesspos[0],
                               x_stddev=sigma,
                               y_stddev=sigma)

    c_init = models.Const2D(amplitude=guessbg)

    init = g_init + c_init
    gim = init(x, y)

    if plot is True:
        plt.figure(1, figsize=(3, 3))
        plt.imshow(gim, origin='bottom', interpolation='nearest')
        plt.title('Guess')
        plt.show()

    if np.isnan(fitim).any():
        if not silent:
            print(
                "GET_POINTSOURCE: WARNING: image to be cropped contains NaNs!")
        fitim[np.isnan(fitim)] = guessbg  # set any NaNs to 0 for crop to work

    if ('mpfit' in method):

        # params=[] - initial input parameters for Gaussian function.
        # (height, amplitude, x, y, width_x, width_y, rota)

        # parameter limits
        minpars = [0, minamp, minx, miny, minsigma, minsigma, 0]
        maxpars = [0, maxamp, maxx, maxy, maxsigma, maxsigma, 0]
        limitedmin = [False, True, True, True, True, True, False]
        limitedmax = [False, False, True, True, True, True, False]

        # ensure that the fit is positive if the sign is 1
        # (or negative if the sign is -1)

        if minamp is None:
            limitedmin[1] = False

        if maxamp:
            limitedmax[1] = True

        if fixFWHM:
            limitedmin[4] = True
            limitedmax[4] = True
            minpars[4] = sigma - 0.001
            maxpars[4] = sigma + 0.001
            limitedmin[5] = True
            limitedmax[5] = True
            minpars[5] = sigma - 0.001
            maxpars[5] = sigma + 0.001

        if fixpos:
            limitedmin[2] = True
            limitedmax[2] = True
            minpars[2] = guesspos[1] - 0.001
            maxpars[2] = guesspos[1] + 0.001
            limitedmin[3] = True
            limitedmax[3] = True
            minpars[3] = guesspos[0] - 0.001
            maxpars[3] = guesspos[0] + 0.001

        res = _gaussfit(fitim,
                        err=None,
                        params=guess,
                        returnfitimage=True,
                        return_all=1,
                        minpars=minpars,
                        maxpars=maxpars,
                        limitedmin=limitedmin,
                        limitedmax=limitedmax)

        params = res[0][0]

        perrs = res[0][1]
        if perrs is None:
            perrs = np.full(6, -1, dtype=float)
        fit = res[1]

    elif 'fast' in method:

        # ensure that the fit is positive
        init.amplitude_0.bounds = (minamp, maxamp)

        init.x_mean_0.bounds = (minx, maxx)
        init.y_mean_0.bounds = (miny, maxy)

        init.x_stddev_0.bounds = (minsigma, maxsigma)

        # --- ensure that angle stays in useful pounds
        #init.theta_0.bounds = (-2*np.pi, 2*np.pi)  # somehow fixing the angle does not work

        if fixFWHM:
            init.x_stddev_0.fixed = True
            init.y_stddev_0.fixed = True

        if fixpos:
            init.x_mean_0.fixed = True
            init.y_mean_0.fixed = True

        fit_meth = fitting.LevMarLSQFitter()
        #        fit_meth = fitting.SimplexLSQFitter()  # very slow
        #        fit_meth = fitting.SLSQPLSQFitter()  # not faster than LevMar

        g_fit = fit_meth(init, x, y, fitim, acc=1e-8)

        fit = g_fit(x, y)

        params = np.array([
            g_fit.amplitude_1.value, g_fit.amplitude_0.value,
            g_fit.x_mean_0.value, g_fit.y_mean_0.value, g_fit.x_stddev_0.value,
            g_fit.y_stddev_0.value, g_fit.theta_0.value
        ])
        perrs = params * 0  # this method does not provide uncertainty estimates

        # --- convert theta to deg:
        params[6] = params[6] / np.pi * 180.0

        # --- theta measures the angle from the x-axis, so we need to add 90
        params[6] = params[6] + 90.0

        # print(init.x_stddev_0.fixed, init.x_stddev_0.bounds)
        # print(g_fit.x_stddev_0.fixed, g_fit.x_stddev_0.bounds)

    else:
        print("GET_POINTSOURCE: ERROR: non-valid method requested: " + method +
              "\n returning None")
        return (None, None, None)

    # --- use the STD of the BG for the BG level uncertainty if larger than
    #     error estimate
    if bgstd > perrs[0]:
        perrs[0] = bgstd

    if verbose:
        print("GET_POINTSOURCE: uncorrected fit params: ", params)
        print("GET_POINTSOURCE: uncorrected fit errs: ", perrs)

    # --- compute the position in the total image and switch x and y to agree
    #     with the numpy convention
    temp = np.copy(params)
    params[2] = temp[3] + fy0
    params[3] = temp[2] + fx0

    temp = np.copy(perrs)
    perrs[2] = temp[3]
    perrs[3] = temp[2]

    # --- if the y FWHM is larger than the one in x direction, switch them so
    #     that the first FWHM is the major axis one.
    if params[5] > params[4]:
        temp = params[4]
        params[4] = params[5]
        params[5] = temp

        temp = perrs[4]
        perrs[4] = perrs[5]
        perrs[5] = temp

        params[6] = params[6] + 90.0

    # --- normalise the angle
    params[6] = params[6] % 180
    if params[6] < 0:
        params[6] = params[6] + 180

    #
    if sign < 0:
        params[0] = -params[0]
        params[1] = -params[1]
        fit = -fit
        fitim = -fitim

    if verbose:
        print(" - GET_POINTSOURCE: fitted params: ", params)
    # convert sigma to FWHM for the output:
    params[4:6] = params[4:6] * s2f

    if plot is True:
        plt.figure(1, figsize=(3, 3))
        plt.imshow(fit, origin='bottom', interpolation='nearest')
        plt.title('Fit with sign')
        plt.show()
        plt.close(1)

        plt.figure(1, figsize=(3, 3))
        plt.imshow(fitim - fit, origin='bottom', interpolation='nearest')
        plt.title('Residual')
        plt.show()
        plt.close(1)

    ims = [fitim, fit, fitim - fit]

    return (params, perrs, ims)
예제 #3
0
def _fit_lines(spectrum, model, fitter=fitting.LevMarLSQFitter(),
               exclude_regions=None, weights=None, window=None,
               ignore_units=False, **kwargs):
    """
    Fit the input model (initial conditions) to the spectrum.  Output will be
    the same model with the parameters set based on the fitting.

    spectrum, model -> model
    """
    #
    # If we are to exclude certain regions, then remove them.
    #

    if exclude_regions is not None:
        spectrum = excise_regions(spectrum, exclude_regions)

    if isinstance(weights, str):
        if weights == 'unc':
            uncerts = spectrum.uncertainty

            if uncerts is not None:
                weights = uncerts.array ** -2
            else:
                logging.warning("Uncertainty values are not defined, but are "
                                "trying to be used in model fitting.")
        else:
            raise ValueError("Unrecognized value `%s` in keyword argument.",
                             weights)
    elif weights is not None:
        # Assume that the weights argument is list-like
        weights = np.array(weights)

    dispersion = spectrum.spectral_axis
    dispersion_unit = spectrum.spectral_axis.unit

    flux = spectrum.flux
    flux_unit = spectrum.flux.unit

    #
    # Determine the window if it is not None.  There
    # are several options here:
    #   window = 4 * u.Angstrom -> Quantity
    #   window = (4*u.Angstrom, 6*u.Angstrom) -> tuple
    #   window = (4, 6)*u.Angstrom -> Quantity
    #

    #
    #  Determine the window if there is one
    #

    # In this case the window defines the area around the center of each model
    if window is not None and isinstance(window, (float, int)):
        center = model.mean
        indices = np.nonzero((spectrum.spectral_axis >= center-window) &
                             (spectrum.spectral_axis < center+window))

        dispersion = dispersion[indices]
        flux = flux[indices]

        if weights is not None:
            weights = weights[indices]

    # In this case the window is the start and end points of where we
    # should fit
    elif window is not None and isinstance(window, tuple):
        indices = np.nonzero((dispersion >= window[0]) &
                             (dispersion < window[1]))

        dispersion = dispersion[indices]
        flux = flux[indices]

        if weights is not None:
            weights = weights[indices]

    elif window is not None and isinstance(window, SpectralRegion):
        try:
            idx1, idx2 = window.bounds
            if idx1 == idx2:
                raise Exception("Bad selected region.")
            extracted_regions = extract_region(spectrum, window)
            dispersion, flux = _combined_region_data(extracted_regions)
            dispersion = dispersion * dispersion_unit
            flux = flux * flux_unit
        except ValueError as e:
            return

    if flux is None or len(flux) == 0:
        raise Exception("Spectrum flux is empty or None.")

    input_spectrum = spectrum

    spectrum = Spectrum1D(
        flux=flux.value * flux_unit,
        spectral_axis=dispersion.value * dispersion_unit,
        wcs=input_spectrum.wcs,
        velocity_convention=input_spectrum.velocity_convention,
        rest_value=input_spectrum.rest_value)

    #
    # Compound models with units can not be fit.
    #
    # Convert the model initial guess to the spectral
    # units and then remove the units
    #

    model_unitless, dispersion_unitless, flux_unitless = \
        _strip_units_from_model(model, spectrum, convert=not ignore_units)

    #
    # Do the fitting of spectrum to the model.
    #

    fit_model_unitless = fitter(model_unitless, dispersion_unitless,
                                flux_unitless, weights=weights, **kwargs)

    #
    # Now add the units back onto the model....
    #

    if not ignore_units:
        fit_model = _add_units_to_model(fit_model_unitless, model, spectrum)
    else:
        fit_model = QuantityModel(fit_model_unitless,
                                  spectrum.spectral_axis.unit,
                                  spectrum.flux.unit)

    return fit_model
예제 #4
0
def gen_center_g2d(image,
                   center_x,
                   center_y,
                   box_width,
                   amp,
                   x_std,
                   y_std,
                   Theta,
                   model_plotting=False):
    """
    PARAMETERS:
        center_x = x coordinate of the circular aperture; Type = float
        center_y = y coordinate of the circular aperture; Type = float
        amp = amplitude of the gaussian.  Find from the projection curve along the center; Type = float
        x_std = Standard deviation of the Gaussian in x before rotating by theta; Type = float
        y_std = Standard deviation of the Gaussian in y before rotating by theta; Type = float
        Theta = Rotation angle in radians. The rotation angle increases counterclockwise; Type = float
    
    RETURNS:
        seperate_centers =  Center of each image; Type = Array [of tuples]
        x_values = x_value of center of each image; Type = Array
        y_values = y_value of center of each image; Type = Array
    """

    #Creating a mesh grid with the shape of image to create model
    y_pos, x_pos = np.mgrid[:image.shape[0], :image.shape[1]]

    #defining starting and stopping points for drawing a box to fit the gaussian to
    xA, yA = int(center_x - box_width), int(center_y - box_width)
    xB, yB = int(center_x + box_width), int(center_y + box_width)

    # fitting the gaussian model
    fit_g = fitting.LevMarLSQFitter()
    gauss2D = models.Gaussian2D(amplitude=amp,
                                x_mean=center_x,
                                y_mean=center_y,
                                x_stddev=x_std,
                                y_stddev=y_std,
                                theta=Theta)
    g = fit_g(gauss2D, x_pos[yA:yB, xA:xB], y_pos[yA:yB, xA:xB], image[yA:yB,
                                                                       xA:xB])
    g1 = fit_g(g, x_pos[yA:yB, xA:xB], y_pos[yA:yB, xA:xB], image[yA:yB,
                                                                  xA:xB])
    #pdb.set_trace()
    new_xCen = g1.x_mean[0]
    new_yCen = g1.y_mean[0]
    fwhm_x = g1.x_fwhm
    fwhm_y = g1.y_fwhm

    if model_plotting == True:

        plt.subplot(131)
        plt.imshow(image[yA:yB, xA:xB])
        plt.title('Data')

        plt.subplot(132)
        plt.imshow(g1(x_pos[yA:yB, xA:xB], y_pos[yA:yB, xA:xB]))
        plt.title('Model')

        plt.subplot(133)
        plt.imshow(image[yA:yB, xA:xB] -
                   g1(x_pos[yA:yB, xA:xB], y_pos[yA:yB, xA:xB]))
        plt.title('Residual')

    #Results
    return new_xCen, new_yCen, fwhm_x, fwhm_y
예제 #5
0
    def test_deriv_2D(self, model_class, test_parameters):
        """
        Test the derivative of a model by fitting with an estimated and
        analytical derivative.
        """

        x_lim = test_parameters['x_lim']
        y_lim = test_parameters['y_lim']

        if model_class.fit_deriv is None or issubclass(model_class,
                                                       PolynomialBase):
            return

        if "log_fit" in test_parameters:
            if test_parameters['log_fit']:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
                y = np.logspace(y_lim[0], y_lim[1], self.M)
                x_test = np.logspace(x_lim[0], x_lim[1], self.N * 10)
                y_test = np.logspace(y_lim[0], y_lim[1], self.M * 10)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)
            y = np.linspace(y_lim[0], y_lim[1], self.M)
            x_test = np.linspace(x_lim[0], x_lim[1], self.N * 10)
            y_test = np.linspace(y_lim[0], y_lim[1], self.M * 10)
        xv, yv = np.meshgrid(x, y)
        xv_test, yv_test = np.meshgrid(x_test, y_test)

        try:
            model_with_deriv = create_model(model_class,
                                            test_parameters,
                                            use_constraints=False,
                                            parameter_key='deriv_initial')
            model_no_deriv = create_model(model_class,
                                          test_parameters,
                                          use_constraints=False,
                                          parameter_key='deriv_initial')
            model = create_model(model_class,
                                 test_parameters,
                                 use_constraints=False,
                                 parameter_key='deriv_initial')
        except KeyError:
            model_with_deriv = create_model(model_class,
                                            test_parameters,
                                            use_constraints=False)
            model_no_deriv = create_model(model_class,
                                          test_parameters,
                                          use_constraints=False)
            model = create_model(model_class,
                                 test_parameters,
                                 use_constraints=False)

        # add 10% noise to the amplitude
        rsn = np.random.default_rng(0)
        amplitude = test_parameters['parameters'][0]
        n = 0.1 * amplitude * (rsn.random((self.M, self.N)) - 0.5)

        data = model(xv, yv) + n
        fitter_with_deriv = fitting.LevMarLSQFitter()
        new_model_with_deriv = fitter_with_deriv(model_with_deriv, xv, yv,
                                                 data)
        fitter_no_deriv = fitting.LevMarLSQFitter()
        new_model_no_deriv = fitter_no_deriv(model_no_deriv,
                                             xv,
                                             yv,
                                             data,
                                             estimate_jacobian=True)
        assert_allclose(new_model_with_deriv(xv_test, yv_test),
                        new_model_no_deriv(xv_test, yv_test),
                        rtol=1e-2)
        if model_class != Gaussian2D:
            assert_allclose(new_model_with_deriv.parameters,
                            new_model_no_deriv.parameters,
                            rtol=0.1)
예제 #6
0
                linepad_left = 25
            if i == 47 and j == 26:
                linepad_left = 75
            if i == 48 and j == 26:
                linepad_left = 75

            line_y_arr_comp1 = line_comp1[line_idx-linepad_left:line_idx+linepad_right, i, j]
            line_x_arr_comp1 = np.linspace(line_idx-linepad_left, line_idx+linepad_right, len(line_y_arr_comp1))

            line_y_arr_comp2 = line_comp2[line_idx-linepad_left:line_idx+linepad_right, i, j]
            line_x_arr_comp2 = np.linspace(line_idx-linepad_left, line_idx+linepad_right, len(line_y_arr_comp2))

            # fitting
            gauss_init_lowcomp = models.Gaussian1D(amplitude=5.0, mean=line_idx-10, stddev=5.0)
            gauss_init_highcomp = models.Gaussian1D(amplitude=5.0, mean=line_idx+10, stddev=5.0)
            fit_gauss = fitting.LevMarLSQFitter()

            g1 = fit_gauss(gauss_init_lowcomp, line_x_arr_comp1, line_y_arr_comp1)
            g2 = fit_gauss(gauss_init_highcomp, line_x_arr_comp2, line_y_arr_comp2)

            # save lzifu total fit to array for plotting
            line_y_arr_total = line_total[line_idx-linepad_left:line_idx+linepad_right, i, j]

            # also fit raw data by a single gaussian
            if (i,j) in force_onecomp_arr:
                linepad_left = 25
                linepad_right = 25

            line_y_arr_data = obs_data[line_idx-linepad_left:line_idx+linepad_right, i, j]
            line_x_arr_data = np.linspace(line_idx-linepad_left, line_idx+linepad_right, len(line_y_arr_data))
예제 #7
0
def calc_rv_todcor(spect,wave,sig, template_fns,bad_intervals=[],fig_fn='',\
    smooth_distance=201,convolve_template=True, alpha=0.3,\
    nwave_log=int(1e4),ncor=1000, return_fitted=False,jd=0.0,out_fn='',\
    heliocentric_correction=0, plotit=False):
    """Compute a radial velocity based on an best fitting template spectrum.
    Teff is estimated at the same time.
    
    Parameters
    ----------
    spect: array-like
        The reduced WiFeS spectrum
        
    wave: array-like
        The wavelengths corresponding to the reduced WiFeS spectrum
        
    template_fns: string
        Spectral template for star 1 and star 2 that can be read in by np.loadtxt
        
    bad_intervals: 
        List of wavelength intervals where e.g. telluric absorption is bad. For todcor,
        These can only be smoothed over.
        
    smooth_distance: float
        Distance to smooth for "continuum" correction
        
        
    Returns
    -------
    rv1: float
        Radial velocity of star 1 in km/s
    rv_sig1: float
        Uncertainty in radial velocity (NB assumes good model fit)
    rv2: float
        Radial velocity of star 2 in km/s
    rv_sig2: float
        Uncertainty in radial velocity (NB assumes good model fit)
    corpeak: float
        Correlation peak
    """
    (wave_log, spect_int, sig_int, template_ints) =  \
        interpolate_spectra_onto_log_grid(spect,wave,sig, template_fns,\
            bad_intervals=bad_intervals, smooth_distance=smooth_distance, \
            convolve_template=convolve_template, nwave_log=nwave_log)

    rvs = np.zeros(len(template_fns))
    peaks = np.zeros(len(template_fns))
    drv = np.log(wave_log[1] / wave_log[0]) * 2.998e5

    #*** Next (hopefully with two templates only!) we continue and apply the TODCOR algorithm.

    window_width = nwave_log // 20
    ramp = np.arange(1, window_width + 1, dtype=float) / window_width
    window = np.ones(nwave_log)
    window[:window_width] *= ramp
    window[-window_width:] *= ramp[::-1]

    template_ints[0] *= window
    template_ints[1] *= window
    spect_int *= window

    norm1 = np.sqrt(np.sum(template_ints[0]**2))
    norm2 = np.sqrt(np.sum(template_ints[1]**2))
    norm_tgt = np.sqrt(np.sum(spect_int**2))

    #pdb.set_trace()
    c1 = np.fft.irfft(
        np.conj(np.fft.rfft(template_ints[0] / norm1)) *
        np.fft.rfft(spect_int / norm_tgt))
    c1 = np.roll(c1, ncor // 2)[:ncor]
    c2 = np.fft.irfft(
        np.conj(np.fft.rfft(template_ints[1] / norm2)) *
        np.fft.rfft(spect_int / norm_tgt))
    c2 = np.roll(c2, ncor // 2)[:ncor]

    #Unclear which way around this line should be. ix_c12 sign was corrected in order to
    #give the right result with simulated data.
    c12 = np.fft.irfft(
        np.fft.rfft(template_ints[1] / norm2) *
        np.conj(np.fft.rfft(template_ints[0] / norm1)))
    c12 = np.roll(c12, ncor // 2)[:ncor]
    ix = np.arange(ncor).astype(int)
    xy = np.meshgrid(ix, ix)

    #Correct the flux ratio for the RMS spectral variation. Is this needed???
    alpha_norm = alpha * norm2 / norm1
    ix_c12 = np.minimum(np.maximum(xy[0] - xy[1] + ncor // 2, 0),
                        ncor - 1)  #!!!This was the old line !!!
    #ix_c12 = np.minimum(np.maximum(xy[1]-xy[0]+ncor//2,0),ncor-1) #XXX New (temporary?) line XXX
    todcor = (c1[xy[0]] + alpha_norm * c2[xy[1]]
              ) / np.sqrt(1 + 2 * alpha_norm * c12[ix_c12] + alpha_norm**2)

    #print("Max correlation: {0:5.2f}".format(np.max(todcor)))
    #print(alpha_norm)
    #plt.plot(drv*(np.arange(nwave_log)-nwave_log//2),np.roll(c1,nwave_log//2))
    #Figure like TODCOR paper:
    #fig = plt.figure()
    #ax = fig.gca(projection='3d')
    #ax.plot_surface(xy[0],xy[1],todcor)

    plt.clf()
    plt.imshow(todcor,
               cmap=cm.gray,
               interpolation='nearest',
               extent=[
                   -drv * ncor / 2, drv * ncor / 2, -drv * ncor / 2,
                   drv * ncor / 2
               ])

    xym = np.unravel_index(np.argmax(todcor), todcor.shape)
    hw_fit = 2

    if (xym[0] < hw_fit) | (xym[1] < hw_fit) | (xym[0] >= ncor - hw_fit) | (
            xym[1] >= ncor - hw_fit):
        print("Error: TODCOR peak to close to edge!")
        raise UserWarning

    ix_fit = np.arange(-hw_fit, hw_fit + 1).astype(int)
    xy_fit = np.meshgrid(ix_fit, ix_fit)
    p_init = models.Gaussian2D(amplitude=np.max(todcor),
                               x_mean=0,
                               y_mean=0,
                               x_stddev=50.0 / drv,
                               y_stddev=50.0 / drv)
    fit_p = fitting.LevMarLSQFitter()

    p = fit_p(
        p_init, xy_fit[0], xy_fit[1],
        todcor[xym[0] - hw_fit:xym[0] + hw_fit + 1,
               xym[1] - hw_fit:xym[1] + hw_fit + 1])

    #import pdb; pdb.set_trace()

    rv_x = drv * ((p.parameters[1] + xym[1]) - ncor // 2)
    rv_y = drv * ((p.parameters[2] + xym[0]) - ncor // 2)

    model_spect = rv_shift_binary(rv_x / drv, rv_y / drv, alpha,
                                  np.fft.rfft(template_ints[0]),
                                  np.fft.rfft(template_ints[1]))

    if plotit:
        (wave_log, spect_int_norm, sig_int, template_int_norm) =  \
        interpolate_spectra_onto_log_grid(spect,wave,sig, template_fns,\
            bad_intervals=bad_intervals, smooth_distance=smooth_distance, \
            convolve_template=convolve_template, nwave_log=nwave_log, \
            subtract_smoothed=False)
        model_spect_norm = rv_shift_binary(rv_x/drv, rv_y/drv, alpha, \
            np.fft.rfft(template_int_norm[0]), np.fft.rfft(template_int_norm[1]))
        model_spect_prim = rv_shift_binary(rv_x/drv, rv_y/drv, 0, \
            np.fft.rfft(template_int_norm[0]), np.fft.rfft(template_int_norm[1]))
        model_spect_sec = rv_shift_binary(rv_x/drv, rv_y/drv, 1e6, \
            np.fft.rfft(template_int_norm[0]), np.fft.rfft(template_int_norm[1]))
        ss = np.ones(5e2) / 5e2
        model_ss = np.convolve(model_spect_norm, ss, mode='same')
        spect_ss = np.convolve(spect_int_norm, ss, mode='same')
        plt.clf()
        plt.plot(wave_log, model_spect_norm / model_ss, label='Joint Model')
        plt.plot(wave_log,
                 model_spect_prim / model_ss / (1 + alpha),
                 label='Primary')
        plt.plot(wave_log,
                 model_spect_sec / model_ss * alpha / (1 + alpha),
                 label='Secondary')
        plt.plot(wave_log, spect_int_norm / spect_ss, label='Data')
        plt.legend()
        plt.axis([3810, 5610, 0, 1.45])
        plt.xlabel(r'Wavelength ($\AA$)')
        plt.ylabel('Flux (normalised)')
        plt.draw()

        #pdb.set_trace() #XXX

    #Compute theoretical RV uncertainties from the "Q" factors...
    errors = []
    for i, template_int in enumerate(template_ints):
        if (i == 0):
            ti = template_int / (1 + alpha)
        else:
            ti = template_int * alpha / (1 + alpha)
        model_spect_deriv = (ti[1:] - ti[:-1]) / (wave_log[1:] - wave_log[:-1])
        wave2_on_s = (0.5 * (wave_log[1:] + wave_log[:-1]))**2 / (
            0.5 * (ti[1:] + ti[:-1] + 2))
        q_factor = np.sqrt(np.mean(wave2_on_s * model_spect_deriv**2))
        photon_rv_error = 3e5 / q_factor * np.median(sig_int) / np.sqrt(
            len(spect))
        errors.append(photon_rv_error)

    #ISSUES:
    #1) Error (below) not computed.
    #errors = np.sqrt(np.diag(fit_p.fit_info['cov_x']))

    if len(out_fn) > 0:
        outfile = open(out_fn, 'a')
        outfile.write(
            '{0:12.4f}, {1:8.2f}, {2:8.2f}, {3:8.2f}, {4:8.2f}, {5:8.3f}\n'.
            format(jd, rv_x + heliocentric_correction, errors[0],
                   rv_y + heliocentric_correction, errors[1], np.max(todcor)))
        outfile.close()

    if return_fitted:
        return wave_log, spect_int, model_spect
    else:
        return rv_x, errors[0], rv_y, errors[1], np.max(todcor)
def findHalfLightSersicdf(pgcs,df1,df2):
    #df1 is galbasedf with including r25- get pgc names from this file
    #df2 is pickle file
    
    halflights = []
    amps = []
    ns = []
    mses = []

    #print('0')
    for i in np.arange(len(pgcs)):
        print(len(pgcs)-i)
        galmask = df2.PGC.isin([pgcs[i]])
        rp = df2.loc[galmask]
        #print(rp)
        pgc=pgcs[i]
        
        if np.isnan(rp.r_arcsec).all()==True:
            halflights.append(np.nan)
            amps.append(np.nan)
            ns.append(np.nan)
            mses.append(np.nan)
            #print('1')
        elif rp.r_arcsec.min()>200:
            halflights.append(np.nan)
            amps.append(np.nan)
            ns.append(np.nan)
            mses.append(np.nan)

            #print('2')
        else:
            try:
                #print('3')
                rp.r_arcsec/=3600.
                r25 = df1.loc[i].R25_DEG
                #print(r25)`=-0
                #r25= r25.tolist()[0]
                #print(r25)
                mask = rp.r_arcsec<2*r25
                #print(mask)
                rp = rp[mask]
                
                #mask = rp.I>0
                #rp = rp[mask]
                ind = np.where(rp.r_arcsec<.5*r25)[0][-1]

                sersic = models.Sersic1D(bounds = {'n':(0,14)})
                outlier_fit = fitting.FittingWithOutlierRemoval(fitting.LevMarLSQFitter(),sigma_clip, niter=3, sigma=2.5)
                fitted_model,filtered_data = outlier_fit(sersic,rp.r_arcsec,rp.I)#,weights=0.1*rp.I)
                filtered_data[:ind]=False

                fit = fitting.LevMarLSQFitter()
                fitted_model = fit(sersic,rp.r_arcsec[~filtered_data],rp.I[~filtered_data])#,weights=(0.1*rp.I[~filtered_data]))
                mse = np.nanmean((rp.I[~filtered_data] - fitted_model(rp.I[~filtered_data]))**2)
                print('')
                print(pgc)
                #print(np.round(mse,decimals=2))
                
                """
                if mse>3.:
                    ns_mse = []
                    for n in nrange:
                        sersic = models.Sersic1D(bounds = {'n':(n,n+1)})
                        outlier_fit = fitting.FittingWithOutlierRemoval(fitting.LevMarLSQFitter(),sigma_clip, niter=3, sigma=3)
                        fitted_model,filtered_data_chisq = outlier_fit(sersic,rp.r_arcsec[~filtered_data],rp.I[~filtered_data])#,weights=(0.1*rp.I[~filtered_data]))
                        m = np.nanmean((rp.I[~filtered_data] - fitted_model(rp.I[~filtered_data]))**2)
                        if m<mse:
                            mse=m
                            ns_mse.append(n)
                            print(mse,n)
                        else:
                            pass
                    if len(ns_mse)==0:
                        print(ns_mse)
                        print('none better')
                        pass
                    else:
                        sersic = models.Sersic1D(bounds = {'n':(ns_mse[-1]-1,ns_mse[-1]+1)})
                        fitted_model = fit(sersic,rp.r_arcsec[~filtered_data],rp.I[~filtered_data])
                """
                re = np.round(fitted_model.r_eff.value*3600*0.9,decimals=3)
                #re*=0.9
                #re = np.round(re,decimals=3)
                n = np.round(fitted_model.n.value,decimals=3)
                #print(re,saloratio,mm15ratio)
                #print(n,mmres.n[i],np.round(mmres['T'][i],decimals=2))

                
                print(re)
                
                if re>250.:
                    halflights.append(np.nan)
                    amps.append('fit fail')
                    ns.append('fit fail')
                    mses.append('fit fail')
                    
                elif re<5.:
                    halflights.append(np.nan)
                    amps.append('fit fail')
                    ns.append('fit fail')
                    mses.append('fit fail')
                    
                else:
                    halflights.append(re)
                    amps.append(fitted_model.amplitude.value)
                    ns.append(n)
                    mses.append(mse)
            except:
                halflights.append(np.nan)
                amps.append('fit fail')
                ns.append('fit fail')
                mses.append('fit fail')


    redf = pd.DataFrame({'PGC':pgcs,'re':halflights,'amp': amps,'n':ns})
    #pgcs = np.asarray(pgcs)
    #halflights = np.asarray(halflights,dtype='float')
    #amps = np.asarray(amps)
    #ns = np.asarray(ns)
    #return(pgcs,halflights,amps,ns,datamasks,nummasked)
    return(redf)
예제 #9
0
def photometry(image_paths, master_dark_path, master_flat_path,
               target_centroid, comparison_flux_threshold, aperture_radii,
               centroid_stamp_half_width, psf_stddev_init,
               aperture_annulus_radius, output_path):
    """
    Parameters
    ----------
    master_dark_path : str
        Path to master dark frame
    master_flat_path :str
        Path to master flat field
    target_centroid : `~numpy.ndarray`
        position of centroid, with shape (2, 1)
    comparison_flux_threshold : float
        Minimum fraction of the target star flux required to accept for a
        comparison star to be included
    aperture_radii : `~numpy.ndarray`
        Range of aperture radii to use
    centroid_stamp_half_width : int
        Centroiding is done within image stamps centered on the stars. This
        parameter sets the half-width of the image stamps.
    psf_stddev_init : float
        Initial guess for the width of the PSF stddev parameter, used for
        fitting 2D Gaussian kernels to the target star's PSF.
    aperture_annulus_radius : int
        For each aperture in ``aperture_radii``, measure the background in an
        annulus ``aperture_annulus_radius`` pixels bigger than the aperture
        radius
    output_path : str
        Path to where outputs will be saved.
    """
    master_dark = fits.getdata(master_dark_path)
    master_flat = fits.getdata(master_flat_path)

    star_positions = init_centroids(image_paths[0],
                                    master_flat,
                                    master_dark,
                                    target_centroid,
                                    plots=True,
                                    min_flux=comparison_flux_threshold).T

    # Initialize some empty arrays to fill with data:
    times = np.zeros(len(image_paths))
    fluxes = np.zeros(
        (len(image_paths), len(star_positions), len(aperture_radii)))
    errors = np.zeros(
        (len(image_paths), len(star_positions), len(aperture_radii)))
    xcentroids = np.zeros((len(image_paths), len(star_positions)))
    ycentroids = np.zeros((len(image_paths), len(star_positions)))
    airmass = np.zeros(len(image_paths))
    airpress = np.zeros(len(image_paths))
    humidity = np.zeros(len(image_paths))
    telfocus = np.zeros(len(image_paths))
    psf_stddev = np.zeros(len(image_paths))

    medians = np.zeros(len(image_paths))

    with ProgressBar(len(image_paths)) as bar:
        for i in range(len(image_paths)):
            bar.update()

            # Subtract image by the dark frame, normalize by flat field
            #imagedata = (rebin_image(fits.getdata(image_paths[i]), 2) - master_dark[:-1, :-1]) / master_flat[:-1, :-1]
            imagedata = (fits.getdata(image_paths[i]) -
                         master_dark) / master_flat

            # Collect information from the header
            imageheader = fits.getheader(image_paths[i])
            exposure_duration = imageheader['EXPTIME']
            times[i] = Time(imageheader['DATE-OBS'],
                            format='isot',
                            scale='utc').jd
            medians[i] = np.median(imagedata)
            airmass[i] = imageheader['AIRMASS']
            airpress[i] = imageheader['AIRPRESS']
            humidity[i] = imageheader['HUMIDITY']
            telfocus[i] = imageheader['TELFOCUS']

            # Initial guess for each stellar centroid informed by previous centroid
            for j in range(len(star_positions)):
                if i == 0:
                    init_x = star_positions[j][0]
                    init_y = star_positions[j][1]
                else:
                    init_x = ycentroids[i - 1][j]
                    init_y = xcentroids[i - 1][j]

                # Cut out a stamp of the full image centered on the star
                image_stamp = imagedata[init_y -
                                        centroid_stamp_half_width:init_y +
                                        centroid_stamp_half_width, init_x -
                                        centroid_stamp_half_width:init_x +
                                        centroid_stamp_half_width]

                # Measure stellar centroid with 2D gaussian fit
                x_stamp_centroid, y_stamp_centroid = centroid_com(image_stamp)
                y_centroid = x_stamp_centroid + init_x - centroid_stamp_half_width
                x_centroid = y_stamp_centroid + init_y - centroid_stamp_half_width

                xcentroids[i, j] = x_centroid
                ycentroids[i, j] = y_centroid

                # import matplotlib.pyplot as plt
                # plt.figure()
                # plt.imshow(np.log(image_stamp), origin='lower', cmap=plt.cm.viridis)
                # plt.scatter(x_stamp_centroid, y_stamp_centroid, s=30)
                # plt.show()
                #
                # plt.figure()
                # s = np.std(imagedata)
                # m = np.median(imagedata)
                # plt.imshow(imagedata, origin='lower', cmap=plt.cm.viridis,
                #            vmin=m-2*s, vmax=m+2*s)
                # plt.show()

                # For the target star, measure PSF:
                if j == 0:
                    psf_model_init = models.Gaussian2D(
                        amplitude=np.max(image_stamp),
                        x_mean=centroid_stamp_half_width,
                        y_mean=centroid_stamp_half_width,
                        x_stddev=psf_stddev_init,
                        y_stddev=psf_stddev_init)

                    fit_p = fitting.LevMarLSQFitter()
                    y, x = np.mgrid[:image_stamp.shape[0], :image_stamp.
                                    shape[1]]
                    best_psf_model = fit_p(
                        psf_model_init, x, y,
                        image_stamp - np.median(image_stamp))
                    psf_stddev[i] = 0.5 * (best_psf_model.x_stddev.value +
                                           best_psf_model.y_stddev.value)

            positions = np.vstack([ycentroids[i, :], xcentroids[i, :]])

            for k, aperture_radius in enumerate(aperture_radii):
                target_apertures = CircularAperture(positions, aperture_radius)
                background_annuli = CircularAnnulus(
                    positions,
                    r_in=aperture_radius + aperture_annulus_radius,
                    r_out=aperture_radius + 2 * aperture_annulus_radius)
                flux_in_annuli = aperture_photometry(
                    imagedata, background_annuli)['aperture_sum'].data
                background = flux_in_annuli / background_annuli.area()
                flux = aperture_photometry(
                    imagedata, target_apertures)['aperture_sum'].data
                background_subtracted_flux = (
                    flux - background * target_apertures.area())

                fluxes[i, :,
                       k] = background_subtracted_flux / exposure_duration
                errors[i, :, k] = np.sqrt(flux)

    ## Save some values
    results = PhotometryResults(times, fluxes, errors, xcentroids, ycentroids,
                                airmass, airpress, humidity, medians,
                                psf_stddev, aperture_radii)
    results.save(output_path)
    return results
예제 #10
0
#  Build psf basis
N_psf_basis = abs(cut)
lambdas = valh[cut:]
xs = vech[:, cut:]
psf_basis = []
for i in range(N_psf_basis):
    psf_basis.append(np.tensordot(xs[:, i], renders, axes=[0, 0]))

# =============================================================================
#       Manual test
# =============================================================================

runtest = False  #input('Run Manual test?')
if runtest:
    prf_model = models.Gaussian2D(x_stddev=1, y_stddev=1)
    fitter = fitting.LevMarLSQFitter()
    indices = np.indices(sim.bkg_sub_img.shape)
    model_fits = []
    best_big = srcs['tnpix'] >= p_sizes[0]**2.
    best_small = srcs['tnpix'] <= p_sizes[2]**2.
    best_flag = srcs['flag'] < 31
    best_srcs = srcs[best_big & best_flag & best_small]
    fitshape = (4 * FWHM, 4 * FWHM)
    prf_model.x_mean = fitshape[0] / 2.
    prf_model.y_mean = fitshape[1] / 2.

    for row in best_srcs:
        position = (row['y'], row['x'])
        y = extract_array(indices[0], fitshape, position)
        x = extract_array(indices[1], fitshape, position)
        sub_array_data = extract_array(sim.bkg_sub_img,
예제 #11
0
def ajusta(x_cube, y_cube, imagen_in, l_min_izq, l_max_izq, l_min_der,
           l_max_der, guess_line, guess_FWHM, orden_pol):
    #def ajusta(x_cube,y_cube,orden_pol):
    #scientific packages
    import pyfits
    import scipy
    from scipy.optimize import curve_fit, leastsq
    import numpy as np
    from numpy import random, exp, sqrt
    import matplotlib.pyplot as plt
    from astropy.modeling import models, fitting, polynomial

    #    global imagen_in

    #    imagen_in=sys.argv[1]

    #    l_min_izq=float(sys.argv[2])
    #    l_max_izq=float(sys.argv[3])
    #    l_min_der=float(sys.argv[4])
    #    l_max_der=float(sys.argv[5])
    #    guess_line=float(sys.argv[6])
    #    guess_FWHM=float(sys.argv[7])
    #    orden_pol=float(sys.argv[8])

    def Lee_cubo(spectra, XX, YY):
        global imagen
        imagen = pyfits.getdata(spectra, header=False)
        header = pyfits.getheader(spectra)

        #print len(imagen)
        #empty array
        Lambda_t = []
        Flux_t = []

        for i in range(len(imagen)):
            y = imagen[i][XX][YY]
            #        x=i*header['CDELT1']+header['CRVAL1']
            x = i * header['CD3_3'] + header['CRVAL3']
            Lambda_t.append(float(imagen[i][XX][YY]))
            #Flux_t.append(float(i*header['CDELT1']+header['CRVAL1']))
            Flux_t.append(float(i * header['CD3_3'] + header['CRVAL3']))
            #print x,y

        Flux = np.array(Lambda_t)
        Lambda = np.array(Flux_t)
        x = Lambda
        y = Flux
        return x, y

    ##########################
    ##
    ## Funcion Region
    ## Toma una region de un espectro entre
    ## un minimo lambda y un maximo lambda
    ## x e y corresponden a lamba y cuentas o flujo
    ##
    ###########################
    #
    def region(minimo, maximo, x, y):
        xar = []
        yar = []
        for i in range(len(x)):
            if (x[i] > minimo) and (x[i] < maximo):
                xar.append(float(x[i]))
                yar.append(float(y[i]))

        xar = np.array(xar)
        yar = np.array(yar)
        return xar, yar

    #########################
    #
    # Funcion Region_discontinuo
    # Toma dos regiones de un espectro separadoas entre
    # un minimo lambda y un maximo lambda a la izquierda y un
    # un minimo lambda y un maximo lambda a la deracha de la emission o obsorption
    # x e y corresponden a lamba y cuentas (o flujo)
    #
    ##########################

    def region_discontinua(minimo1, maximo1, minimo2, maximo2, x, y):
        xar = []
        yar = []
        for i in range(len(x)):
            if ((x[i] > minimo1) and (x[i] < maximo1)) or ((x[i] > minimo2) and
                                                           (x[i] < maximo2)):
                xar.append(float(x[i]))
                yar.append(float(y[i]))

        xar = np.array(xar)
        yar = np.array(yar)
        return xar, yar

    #######
    # poly_fit, fitea un polinomio a datos
    # xp e yp correspondend a x e y a ser fiteado
    #
    # en este caso corresponden al x e y del output de la
    # region discontinua
    #
    #
    #######

    def poly_fit(xp, yp, grado_pol):

        t_init = polynomial.Polynomial1D(degree=int(grado_pol))
        fit_t = fitting.LevMarLSQFitter()
        t = fit_t(t_init, xp, yp)
        return t

    #calclulo original

    x_sci, y_sci = Lee_cubo(imagen_in, x_cube, y_cube)
    x = x_sci
    y = y_sci
    xspec_o, yspec_o = region(l_min_izq, l_max_der, x, y)

    #################

    ###Fitting regions with a polynomio

    x_cont_o, y_cont_o = region_discontinua(l_min_izq, l_max_izq, l_min_der,
                                            l_max_der, x, y)

    #cont1=poly_fit(xa1,ya1,12)
    #cont2=poly_fit(xa2,ya2,12)
    cont3_o = poly_fit(x_cont_o, y_cont_o, orden_pol)

    #print cont1
    #print cont2

    #res1= -cont1(xa1)+ ya1
    #res2= -cont2(xa2)+ ya2
    res3_o = -cont3_o(x_cont_o) + y_cont_o

    #se aplica el polinomio al espectro en la zona de interes
    res4_o = -cont3_o(xspec_o) + yspec_o

    #####################
    #
    # Normalization!!!
    #
    ######################
    res4_oN = yspec_o / cont3_o(xspec_o)

    ######################

    ################

    #iteracion 1
    t_init4_o = models.Gaussian1D(amplitude=1,
                                  mean=guess_line,
                                  stddev=guess_FWHM)
    fit_t4_o = fitting.LevMarLSQFitter()
    t4_o = fit_t4_o(t_init4_o, xspec_o, res4_o)

    a_science = t4_o.mean.value
    b_science = t4_o.stddev.value
    Amplitud = t4_o.amplitude.value

    #    Redefiniendo: de acuerdo al FWHM

    #xspec_o,yspec_o=region(l_min_izq,l_max_der,x,y)
    #x_cont_o,y_cont_o=region_discontinua(l_min_izq,l_max_izq,l_min_der,l_max_der,x,y)
    #cont3_o=poly_fit(x_cont_o,y_cont_o,orden_pol)
    #res4_o= -cont3_o(xspec_o)+yspec_o

    import numpy
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt
    import math

    CWt = t4_o.mean.value
    FWHMt = 2 * sqrt(2 * math.log(2)) * t4_o.stddev.value
    At = t4_o.amplitude.value

    xspec_o, yspec_o = region(CWt - 5 * FWHMt, CWt + 5 * FWHMt, x, y)
    x_cont_o, y_cont_o = region_discontinua(CWt - 5 * FWHMt, CWt - 3 * FWHMt,
                                            CWt + 3 * FWHMt, CWt + 5 * FWHMt,
                                            x, y)
    cont3_o = poly_fit(x_cont_o, y_cont_o, orden_pol)
    res4_o = -cont3_o(xspec_o) + yspec_o

    #iteracion 1
    t_init4_o = models.Gaussian1D(amplitude=Amplitud,
                                  mean=a_science,
                                  stddev=b_science)
    fit_t4_o = fitting.LevMarLSQFitter()
    t4_o = fit_t4_o(t_init4_o, xspec_o, res4_o)

    a_science = t4_o.mean.value
    b_science = t4_o.stddev.value
    Amplitud = t4_o.amplitude.value

    #iteracion 2 para gaussiana
    t_init4_o = models.Gaussian1D(amplitude=Amplitud,
                                  mean=a_science,
                                  stddev=b_science)
    fit_t4_o = fitting.LevMarLSQFitter()
    t4_o = fit_t4_o(t_init4_o, xspec_o, res4_o)

    residuo_o = -t4_o(xspec_o) + res4_o

    #print "resultados",t_init4,t4
    #print "resultados",t4_o
    a_science = t4_o.mean.value
    b_science = t4_o.stddev.value
    c_science_amplitude = t4_o.amplitude.value

    #Aplicando FWHM guess
    guess_FWHM_gauss = -float(-b_science)
    #print guess_FWHM_gauss
    #exit(0)

    ##print t4.mean
    Lambda_gauss_fit_sci = "{:10.3f}".format(a_science)
    Sigma_gauss_fit_sci = "{:10.3f}".format(b_science)
    #print  Lambda_gauss_fit_sci, Sigma_gauss_fit_sci
    #print a ,b

    central_wavelenght = t4_o.mean.value
    FWHM = t4_o.stddev.value
    Amplitude = t4_o.amplitude.value

    import numpy
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt
    import math

    # Define model function to be used to fit to the data above:
    def gauss(x, *p):
        A, mu, sigma = p
        return A * numpy.exp(-(x - mu)**2 / (2. * sigma**2))

    CW = t4_o.mean.value
    FWHM = 2 * sqrt(2 * math.log(2)) * t4_o.stddev.value
    A = t4_o.amplitude.value

    #    def Momentos(x,*p)

    #INTEGRAL
    from scipy import integrate
    #def myfunc(x, a, b):
    #    return (x**b) + a
    #
    ## These are the arguments that will be passed as a and b to myfunc()
    args = A, CW, FWHM
    #print args
    #
    ## Integrate myfunc() from 0.5 to 1.5
    #print  CW,CW-4*FWHM, CW+4*FWHM,FWHM
    #results = integrate.quad(gauss, min(x_sci), max(x_sci), args)
    results = integrate.romberg(gauss, CW - 5 * FWHM, CW + 5 * FWHM, args)

    #print results, gauss(CW-4*FWHM,A,CW,FWHM), gauss(CW+4*FWHM,A,CW,FWHM), gauss(CW+4*FWHM,A,CW,FWHM)*(CW+4*FWHM-(CW-4*FWHM))

    #print x_cube,y_cube,A,CW,FWHM,results
    #    print  Lambda_gauss_fit_sci, Sigma_gauss_fit_sci

    #plt.plot(xspec_o,res4_o, 'c-',lw=1,label='gaus')
    #plt.plot(xspec_o,t4_o(xspec_o),'r-', lw=2,label='gauss')
    #plt.pause(0.005)
    #plt.clf()
    RESULTADO = int(x_cube), int(y_cube), float(A), float(CW), float(
        FWHM), float(results)
    return RESULTADO[0], RESULTADO[1], RESULTADO[2], RESULTADO[3], RESULTADO[
        4], RESULTADO[5]
예제 #12
0
def Flux_line(
    source_name, instru, line, row, column
):  #row/colonne définit la position d'un pixel  instru=MAPS/SPIRE_Map
    fit_g = fitting.LevMarLSQFitter()

    if instru == 'PACS':
        Wave_red, Flux_red = flux_PACS(source_name,
                                       'R')[2], flux_PACS(source_name, 'R')[4]
        Wave_blue, Flux_blue = flux_PACS(source_name,
                                         'B')[2], flux_PACS(source_name,
                                                            'B')[4]
        fit_g = fitting.LevMarLSQFitter()
        if line == 'NII_122_em' or line == 'OH_119' or line == 'OI_145' or line == 'NII_122_abs' or line == 'Thing_123':
            cond = np.where(np.isfinite(Flux_red[:, row, column]))
            Wave_R, Flux_R = Wave_red[cond], Flux_red[:, row, column][cond]
        if line == 'NIII_57' or line == 'OI_63':
            cond = np.where(np.isfinite(Flux_blue[:, row, column]))
            Wave_B, Flux_B = Wave_blue[cond], Flux_blue[:, row, column][cond]

        if np.shape(cond)[1] != 0:

            if line == 'NII_122_em':

                NII = Flux_R[np.where((Wave_R > 121.5) & (Wave_R < 122.5))]
                fit_line = fit_lines_gauss(Wave_R, Flux_R, NII, 'Em')[2]

            if line == 'NII_122_abs':

                NII = Flux_R[np.where((Wave_R > 121.5) & (Wave_R < 122.5))]
                fit_line = fit_lines_gauss(Wave_R, Flux_R, NII, 'Abs')[2]

            if line == 'Thing_123':
                Thing_123 = Flux_R[np.where((Wave_R > 122.5)
                                            & (Wave_R < 123.5))]
                fit_line = fit_lines_gauss(Wave_R, Flux_R, Thing_123, 'Em')[2]

            if line == 'NIII_57':

                NIII = Flux_B[np.where((Wave_B > 56) & (Wave_B < 58))]
                fit_line = fit_lines_gauss(Wave_B, Flux_B, NIII, 'Em')[2]

            if line == 'OH_119':

                OH_1 = Flux_R[np.where((Wave_R > 119.21) & (Wave_R < 119.25))]
                OH_2 = Flux_R[np.where((Wave_R > 119.42) & (Wave_R < 119.46))]

                g_init_OH_1, g_init_OH_2 = fit_lines_gauss(
                    Wave_R, Flux_R, OH_1,
                    'Abs')[1], fit_lines_gauss(Wave_R, Flux_R, OH_2, 'Abs')[1]
                l_init_continuum = models.Polynomial1D(degree=2)

                g_line_OH = g_init_OH_1 + g_init_OH_2 + l_init_continuum
                fit_line = fit_g(g_line_OH, Wave_R, Flux_R)

            if line == 'OI_63':

                OI_63 = Flux_B[np.where((Wave_B > 62) & (Wave_B < 64))]
                fit_line = fit_lines_gauss(Wave_B, Flux_B, OI_63, 'Em')[2]

            if line == 'OI_145':

                OI_145 = Flux_R[np.where((Wave_R > 144.8) & (Wave_R < 145.8))]
                fit_line = fit_lines_gauss(Wave_R, Flux_R, OI_145, 'Em')[2]

            amplitude, std = abs(fit_line.amplitude_0[0]), fit_line.stddev_0[
                0]  #On retrouve les paramètres A et sigma pour le calcul du flux des lines
            Line_flux = amplitude * std * np.sqrt(2 * np.pi)

        else:
            Line_flux = 0

    if instru == 'SPIRE_Map':
        Wave_red, Flux_red = plot_image_flux_SPIRE_Map(
            source_name, 'HR',
            'SSW')[2], plot_image_flux_SPIRE_Map(source_name, 'HR', 'SSW')[4]
        Wave_blue, Flux_blue = plot_image_flux_SPIRE_Map(
            source_name, 'HR',
            'SLW')[2], plot_image_flux_SPIRE_Map(source_name, 'HR', 'SLW')[4]
        fit_g = fitting.LevMarLSQFitter()
        if line == 'NII_1461' or line == 'OH_971' or line == 'OH_1033' or line == 'H2O_1113' or line == 'H2O_1115':
            cond = np.where(np.isfinite(Flux_red[:, row, column]))
            Wave_R, Flux_R = Wave_red[cond], Flux_red[:, row, column][cond]
        if line == 'CI_10' or line == 'CI_21' or line == 'CO_43' or line == 'CO_54' or line == 'CO_65' or line == 'CO_76' or line == 'CO_87' or line == 'CH_835' or line == 'OH_909':
            cond = np.where(np.isfinite(Flux_blue[:, row, column]))
            Wave_B, Flux_B = Wave_blue[cond], Flux_blue[:, row, column][cond]

        if np.shape(cond)[1] != 0:
            #High frequencies

            if line == 'NII_1461':
                NII = Flux_R[np.where((Wave_R > 1450) & (Wave_R < 1466))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, NII, 'Em')[2]

            if line == 'HF_10':
                HF_10 = Flux_R[np.where((Wave_R > 1230) & (Wave_R < 1234))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, HF_10, 'Abs')[2]

            if line == 'H2O_1113':
                H2O_1113 = Flux_R[np.where((Wave_R > 1112) & (Wave_R < 1114))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, H2O_1113, 'Abs')[2]

            if line == 'H2O_1115':
                H2O_1115 = Flux_R[np.where((Wave_R > 1114) & (Wave_R < 1116))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, H2O_1115, 'Abs')[2]

            if line == 'OH_971':
                OH_971 = Flux_R[np.where((Wave_R > 970) & (Wave_R < 974))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, OH_971, 'Abs')[2]

            if line == 'OH_1033':
                OH_1033 = Flux_R[np.where((Wave_R > 1031) & (Wave_R < 1034))]
                fit_line = fit_lines_sinc(Wave_R, Flux_R, OH_1033, 'Abs')[2]

            #Low Frequencies

            if line == 'CI_10':
                CI_10 = Flux_B[np.where((Wave_B > 490) & (Wave_B < 493.8))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CI_10, 'Em')[2]

            if line == 'CI_21':
                #if source_name=='MGE_4121':
                CI_21 = Flux_B[np.where((Wave_B > 807) & (Wave_B < 812))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CI_21, 'Em')[2]

            if line == 'CO_43':
                CO_43 = Flux_B[np.where((Wave_B > 459) & (Wave_B < 463))]

                fit_line = fit_lines_sinc(Wave_B, Flux_B, CO_43, 'Em')[2]

            if line == 'CO_54':
                CO_54 = Flux_B[np.where((Wave_B > 573.5) & (Wave_B < 580))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CO_54, 'Em')[2]

            if line == 'CO_65':
                CO_65 = Flux_B[np.where((Wave_B > 689) & (Wave_B < 693))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CO_65, 'Em')[2]

            if line == 'CO_76':
                CO_65 = Flux_B[np.where((Wave_B > 804) & (Wave_B < 807))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CO_76, 'Em')[2]

            if line == 'CO_87':
                CO_65 = Flux_B[np.where((Wave_B > 920) & (Wave_B < 922))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CO_87, 'Em')[2]

            if line == 'CH_835':
                CH_835 = Flux_B[np.where((Wave_B > 834) & (Wave_B < 837))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, CH_835, 'Abs')[2]

            if line == 'OH_909':
                OH_909 = Flux_B[np.where((Wave_B > 907) & (Wave_B < 911))]
                fit_line = fit_lines_sinc(Wave_B, Flux_B, OH_909, 'Abs')[2]

            amplitude, std = abs(fit_line.amplitude_0[0]), abs(
                fit_line.sigma_0[0]
            )  #On retrouve les paramètres A et sigma pour le calcul du flux des lines
            Line_flux = amplitude * std * np.pi

        else:
            Line_flux = 0

    return Line_flux
예제 #13
0
    def test_deriv_2D(self, model_class, test_parameters):
        """
        Test the derivative of a model by fitting with an estimated and
        analytical derivative.
        """

        x_lim = test_parameters['x_lim']
        y_lim = test_parameters['y_lim']

        if model_class.fit_deriv is None:
            pytest.skip("Derivative function is not defined for model.")
        if issubclass(model_class, PolynomialBase):
            pytest.skip("Skip testing derivative of polynomials.")

        if "log_fit" in test_parameters:
            if test_parameters['log_fit']:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
                y = np.logspace(y_lim[0], y_lim[1], self.M)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)
            y = np.linspace(y_lim[0], y_lim[1], self.M)
        xv, yv = np.meshgrid(x, y)

        try:
            model_with_deriv = create_model(model_class,
                                            test_parameters,
                                            use_constraints=False,
                                            parameter_key='deriv_initial')
            model_no_deriv = create_model(model_class,
                                          test_parameters,
                                          use_constraints=False,
                                          parameter_key='deriv_initial')
            model = create_model(model_class,
                                 test_parameters,
                                 use_constraints=False,
                                 parameter_key='deriv_initial')
        except KeyError:
            model_with_deriv = create_model(model_class,
                                            test_parameters,
                                            use_constraints=False)
            model_no_deriv = create_model(model_class,
                                          test_parameters,
                                          use_constraints=False)
            model = create_model(model_class,
                                 test_parameters,
                                 use_constraints=False)

        # add 10% noise to the amplitude
        rsn = np.random.RandomState(1234567890)
        amplitude = test_parameters['parameters'][0]
        n = 0.1 * amplitude * (rsn.rand(self.M, self.N) - 0.5)

        data = model(xv, yv) + n
        fitter_with_deriv = fitting.LevMarLSQFitter()
        new_model_with_deriv = fitter_with_deriv(model_with_deriv, xv, yv,
                                                 data)
        fitter_no_deriv = fitting.LevMarLSQFitter()
        new_model_no_deriv = fitter_no_deriv(model_no_deriv,
                                             xv,
                                             yv,
                                             data,
                                             estimate_jacobian=True)
        assert_allclose(new_model_with_deriv.parameters,
                        new_model_no_deriv.parameters,
                        rtol=0.1)
예제 #14
0
def test_nircam_coron_wfe_offset(fov_pix=15, oversample=2, fit_gaussian=True):
    """
    Test offset of LW coronagraphic PSF w.r.t. wavelength due to optical wedge dispersion.
    Option to fit a Gaussian to PSF core in order to better determine peak position.
    Difference from 2.5 to 3.3 um should be ~0.015mm.
    Difference from 3.3 to 5.0 um should be ~0.030mm.
    """

    # Disable Gaussian fit if astropy not installed
    if fit_gaussian:
        try:
            from astropy.modeling import models, fitting
        except ImportError:
            fit_gaussian = False

    # Ensure oversample to >1 no Gaussian fitting
    if fit_gaussian == False:
        oversample = 2 if oversample < 2 else oversample
        rtol = 0.2
    else:
        rtol = 0.1

    # Set up an off-axis coronagraphic PSF
    inst = webbpsf_core.NIRCam()
    inst.filter = 'F335M'
    inst.pupil_mask = 'CIRCLYOT'
    inst.image_mask = None
    inst.include_si_wfe = True
    inst.options['jitter'] = None

    # size of an oversampled pixel in mm (detector pixels are 18um)
    mm_per_pix = 18e-3 / oversample

    # Investigate the differences between three wavelengths
    warr = np.array([2.5, 3.3, 5.0])

    # Find PSF position for each wavelength
    yloc = []
    for w in warr:
        hdul = inst.calc_psf(monochromatic=w * 1e-6,
                             oversample=oversample,
                             add_distortion=False,
                             fov_pixels=fov_pix)

        # Vertical image cross section of oversampled PSF
        im = hdul[0].data
        sh = im.shape
        xvals = mm_per_pix * (np.arange(sh[0]) - sh[0] / 2)
        yvals = im[:, int(sh[1] / 2)]

        # Fit 1D Gaussian to vertical cross section of PSF
        if fit_gaussian:
            # Create Gaussian model fit of PSF core to determine y offset
            g_init = models.Gaussian1D(amplitude=yvals.max(),
                                       mean=0,
                                       stddev=0.01)
            fit_g = fitting.LevMarLSQFitter()
            g = fit_g(g_init, xvals, yvals)
            yloc.append(g.mean.value)
        else:
            # Just use PSF max location
            yloc.append(xvals[yvals == yvals.max()][0])
    yloc = np.array(yloc)

    # Difference from 2.5 to 3.3 um should be ~0.015mm
    diff_25_33 = np.abs(yloc[0] - yloc[1])
    assert np.allclose(
        diff_25_33, 0.016, rtol=rtol
    ), "PSF shift between {:.2f} and {:.2f} um of {:.3f} mm does not match expected value (~0.016 mm).".format(
        warr[1], warr[0], diff_25_33)
    # Difference from 3.3 to 5.0 um should be ~0.030mm
    diff_50_33 = np.abs(yloc[2] - yloc[1])
    assert np.allclose(
        diff_50_33, 0.032, rtol=rtol
    ), "PSF shift between {:.2f} and {:.2f} um of {:.3f} mm does not match expected value (~0.032 mm).".format(
        warr[1], warr[2], diff_50_33)
예제 #15
0
def test_gaussian2d_positive_stddev():
    # This is 2D Gaussian with noise to be fitted, as provided by @ysBach
    test = [
        [
            -54.33, 13.81, -34.55, 8.95, -143.71, -0.81, 59.25, -14.78, -204.9,
            -30.87, -124.39, 123.53, 70.81, -109.48, -106.77, 35.64, 18.29
        ],
        [
            -126.19, -89.13, 63.13, 50.74, 61.83, 19.06, 65.7, 77.94, 117.14,
            139.37, 52.57, 236.04, 100.56, 242.28, -180.62, 154.02, -8.03
        ],
        [
            91.43, 96.45, -118.59, -174.58, -116.49, 80.11, -86.81, 14.62,
            79.26, 7.56, 54.99, 260.13, -136.42, -20.77, -77.55, 174.52, 134.41
        ],
        [
            33.88, 7.63, 43.54, 70.99, 69.87, 33.97, 273.75, 176.66, 201.94,
            336.34, 340.54, 163.77, -156.22, 21.49, -148.41, 94.88, 42.55
        ],
        [
            82.28, 177.67, 26.81, 17.66, 47.81, -31.18, 353.23, 589.11, 553.27,
            242.35, 444.12, 186.02, 140.73, 75.2, -87.98, -18.23, 166.74
        ],
        [
            113.09, -37.01, 134.23, 71.89, 107.88, 198.69, 273.88, 626.63,
            551.8, 547.61, 580.35, 337.8, 139.8, 157.64, -1.67, -26.99, 37.35
        ],
        [
            106.47, 31.97, 84.99, -125.79, 195.0, 493.65, 861.89, 908.31,
            803.9, 781.01, 532.59, 404.67, 115.18, 111.11, 28.08, 122.05,
            -58.36
        ],
        [
            183.62, 45.22, 40.89, 111.58, 425.81, 321.53, 545.09, 866.02,
            784.78, 731.35, 609.01, 405.41, -19.65, 71.2, -140.5, 144.07, 25.24
        ],
        [
            137.13, -86.95, 15.39, 180.14, 353.23, 699.01, 1033.8, 1014.49,
            814.11, 647.68, 461.03, 249.76, 94.8, 41.17, -1.16, 183.76, 188.19
        ],
        [
            35.39, 26.92, 198.53, -37.78, 638.93, 624.41, 816.04, 867.28,
            697.0, 491.56, 378.21, -18.46, -65.76, 98.1, 12.41, -102.18, 119.05
        ],
        [
            190.73, 125.82, 311.45, 369.34, 554.39, 454.37, 755.7, 736.61,
            542.43, 188.24, 214.86, 217.91, 7.91, 27.46, -172.14, -82.36,
            -80.31
        ],
        [
            -55.39, 80.18, 267.19, 274.2, 169.53, 327.04, 488.15, 437.53,
            225.38, 220.94, 4.01, -92.07, 39.68, 57.22, 144.66, 100.06, 34.96
        ],
        [
            130.47, -4.23, 46.3, 101.49, 115.01, 217.38, 249.83, 115.9, 87.36,
            105.81, -47.86, -9.94, -82.28, 144.45, 83.44, 23.49, 183.9
        ],
        [
            -110.38, -115.98, 245.46, 103.51, 255.43, 163.47, 56.52, 33.82,
            -33.26, -111.29, 88.08, 193.2, -100.68, 15.44, 86.32, -26.44,
            -194.1
        ],
        [
            109.36, 96.01, -124.89, -16.4, 84.37, 114.87, -65.65, -58.52,
            -23.22, 42.61, 144.91, -209.84, 110.29, 66.37, -117.85, -147.73,
            -122.51
        ],
        [
            10.94, 45.98, 118.12, -46.53, -72.14, -74.22, 21.22, 0.39, 86.03,
            23.97, -45.42, 12.05, -168.61, 27.79, 61.81, 84.07, 28.79
        ],
        [
            46.61, -104.11, 56.71, -90.85, -16.51, -66.45, -141.34, 0.96,
            58.08, 285.29, -61.41, -9.01, -323.38, 58.35, 80.14, -101.22,
            145.65
        ]
    ]
    g_init = models.Gaussian2D(x_mean=8, y_mean=8)
    fitter = fitting.LevMarLSQFitter()
    y, x = np.mgrid[:17, :17]
    g_fit = fitter(g_init, x, y, test)

    # Compare with @ysBach original result:
    # - x_stddev was negative, so its abs value is used for comparison here.
    # - theta is beyond (-90, 90) deg, which doesn't make sense, so ignored.
    assert_allclose([g_fit.amplitude.value, g_fit.y_stddev.value],
                    [984.7694929790363, 3.1840618351417307],
                    rtol=1.5e-6)
    assert_allclose(g_fit.x_mean.value, 7.198391516587464)
    assert_allclose(g_fit.y_mean.value, 7.49720660088511, rtol=5e-7)
    assert_allclose(g_fit.x_stddev.value, 1.9840185107597297, rtol=2e-6)
예제 #16
0
def fitting(wave_range, flux_range, z, plot=0):
    set_params = set_parameters(z)
    elines = set_params[0]
    redshift = set_params[1]
    z = redshift[0]
    z_min, z_max = redshift[1], redshift[2]
    disp = set_params[2]
    fit_sigma, sigma, sigma_min, sigma_max = disp[0], disp[1], disp[2], disp[3]
    link = np.asarray(set_params[3])
    eline_link = set_params[4]
    type = set_params[5]

    n_elines = np.count_nonzero(~np.isnan(elines))

    if n_elines == 1:

        def G_model(x, A0=1, sigma0=2, z00=z):

            l_0 = elines[0] * (1 + z00)
            model0 = A0 * np.exp(-0.5 * (x - l_0)**2 / (sigma0**2))

            return model0 + model1

        def G_deriv(x, A0=1, sigma0=2, z00=z):
            # Jacobian of G_model
            l_0 = elines[0] * (1 + z00)

            y0 = (x - l_0) / (sigma0)

            model0 = A0 * np.exp(-0.5 * y0**2)

            d_A0 = np.exp(-0.5 * y0**2)
            d_sigma0 = A0 * d_A0 * (x - l_0)**2 / sigma0**3
            d_z00 = elines[0] * A0 * d_A0 * (x - l_0) / sigma0**2

            return [d_A0, d_sigma0, d_z00]

        # initialize fitters
        from astropy.modeling import models, fitting
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=3,
                                                   sigma=3.0)
        GaussModel = custom_model(G_model, fit_deriv=G_deriv)
        model = GaussModel()
        or_fitted_model, mask = or_fit(model, wave_range, flux_range)
        A0_best, sigma_best, z_best = mask.A0, mask.sigma0, mask.z00

        if plot == 1:

            plt.plot(wave_range, flux_range, 'k+')
            plt.plot(wave_range,
                     G_model(wave_range, A0_best, sigma_best, z_best), "k-")

        return [sigma_best, [A0_best], z_best, or_fitted_model]  #best_vals

    if n_elines == 2:

        def G_model(x, A0=1, A1=1, sigma0=2, z00=z):
            l_0 = elines[0] * (1 + z00)
            l_1 = elines[1] * (1 + z00)

            model0 = A0 * np.exp(-0.5 * (x - l_0)**2 / (sigma0**2))
            model1 = A1 * np.exp(-0.5 * (x - l_1)**2 / (sigma0**2))

            return model0 + model1

        def G_deriv(x, A0=1, A1=1, sigma0=2, z00=z):
            # Jacobian of G_model
            l_0 = elines[0] * (1 + z00)
            l_1 = elines[1] * (1 + z00)

            y0 = (x - l_0) / (sigma0)
            y1 = (x - l_1) / (sigma0)

            model0 = A0 * np.exp(-0.5 * y0**2)
            model1 = A1 * np.exp(-0.5 * y1**2)

            d_A0 = np.exp(-0.5 * y0**2)
            d_A1 = np.exp(-0.5 * y1**2)
            d_sigma0 = A0 * d_A0 * (x - l_0)**2 / sigma0**3 + A1 * d_A1 * (
                x - l_1)**2 / sigma0**3
            d_z00 = elines[0] * A0 * d_A0 * (x - l_0) / sigma0**2 + elines[
                1] * A1 * d_A1 * (x - l_1) / sigma0**2

            return [d_A0, d_A1, d_sigma0, d_z00]

        if 0 in link:

            #Amplitud que no se va a ajustar
            link_index_0 = np.where(link == 0)[0][0]
            #Las que si se van a ajustar
            link_index_1 = np.where(link == 1)[0][0]
            #A que linea se va a linkear.
            eline_to_link = eline_link[link_index_0]

            if link_index_0 == 0 and eline_to_link == 1:
                A0_best = A1_best / 3.
            if link_index_0 == 1 and eline_to_link == 0:
                A1_best = A0_best / 3.

        # initialize fitters
        from astropy.modeling import models, fitting
        fit = fitting.LevMarLSQFitter()
        or_fit = fitting.FittingWithOutlierRemoval(fit,
                                                   sigma_clip,
                                                   niter=3,
                                                   sigma=3.0)
        GaussModel = custom_model(G_model, fit_deriv=G_deriv)
        model = GaussModel()
        or_fitted_model, mask = or_fit(model, wave_range, flux_range)
        A0_best, A1_best, sigma_best, z_best = mask.A0, mask.A1, mask.sigma0, mask.z00

        if plot == 1:

            plt.plot(wave_range, flux_range, 'k+')
            plt.plot(wave_range,
                     G_model(wave_range, A0_best, A1_best, sigma_best, z_best),
                     "k-")

        return [sigma_best, [A0_best, A1_best], z_best,
                or_fitted_model]  #best_vals

    if n_elines == 3:

        ################################################################################

        def G_model(x, A0=1, A1=1, A2=1, sigma0=2, z00=z):
            l_0 = elines[0] * (1 + z00)
            l_1 = elines[1] * (1 + z00)
            l_2 = elines[2] * (1 + z00)

            model0 = A0 * np.exp(-0.5 * (x - l_0)**2 / (sigma0**2))
            model1 = A1 * np.exp(-0.5 * (x - l_1)**2 / (sigma0**2))
            model2 = A2 * np.exp(-0.5 * (x - l_2)**2 / (sigma0**2))
            #A0=A2/3.
            return model0 + model1 + model2

        def G_deriv(x, A0=1, A1=1, A2=1, sigma0=2, z00=z):
            # Jacobian of G_model
            l_0 = elines[0] * (1 + z00)
            l_1 = elines[1] * (1 + z00)
            l_2 = elines[2] * (1 + z00)
            y0 = (x - l_0) / (sigma0)
            y1 = (x - l_1) / (sigma0)
            y2 = (x - l_2) / (sigma0)
            #A0=A2/3.

            model0 = A0 * np.exp(-0.5 * y0**2)
            model1 = A1 * np.exp(-0.5 * y1**2)
            model2 = A2 * np.exp(-0.5 * y2**2)

            d_A0 = np.exp(-0.5 * y0**2)
            d_A1 = np.exp(-0.5 * y1**2)
            d_A2 = np.exp(-0.5 * y2**2)
            d_sigma0 = A0 * d_A0 * (x - l_0)**2 / sigma0**3 + A1 * d_A1 * (
                x - l_1)**2 / sigma0**3 + A2 * d_A2 * (x - l_2)**2 / sigma0**3
            d_z00 = elines[0] * A0 * d_A0 * (
                x - l_0) / sigma0**2 + elines[1] * A1 * d_A1 * (
                    x - l_1) / sigma0**2 + elines[2] * A2 * d_A2 * (
                        x - l_2) / sigma0**2

            return [d_A0, d_A1, d_A2, d_sigma0, d_z00]

        # initialize fitters
        from astropy.modeling import models, fitting
        fit = fitting.LevMarLSQFitter()
        #or_fit = fitting.FittingWithOutlierRemoval(fit, sigma_clip,niter=1, sigma=3)
        GaussModel = custom_model(G_model, fit_deriv=G_deriv)
        model = GaussModel(
            bounds={
                "sigma0": (1., 10.),
                "z00": (z - 400. / 3e5, z + 400. / 3e5),
                "A1": (0.2, 1.5)
            })
        #or_fitted_model, mask = or_fit(model, wave_range,flux_range)
        fitted_model = fit(model, wave_range, flux_range)
        #A0_best,A1_best,A2_best,sigma_best,z_best=mask.A2,mask.A1,mask.A2,mask.sigma0,mask.z00
        A0_best, A1_best, A2_best, sigma_best, z_best = fitted_model.A2.value, fitted_model.A1.value, fitted_model.A2.value, fitted_model.sigma0.value, fitted_model.z00.value

        if 0 in link:

            #Amplitud que no se va a ajustar
            link_index_0 = np.where(link == 0)[0][0]
            #Las que si se van a ajustar
            link_index_1 = np.where(link == 1)[0][0]
            #A que linea se va a linkear.
            eline_to_link = eline_link[link_index_0]

            if link_index_0 == 0 and eline_to_link == 2:
                A0_best = A2_best / 3.
            if link_index_0 == 0 and eline_to_link == 1:
                A0_best = A1_best / 3.
            if link_index_0 == 1 and eline_to_link == 0:
                A1_best = A0_best / 3.
            if link_index_0 == 1 and eline_to_link == 2:
                A1_best = A2_best / 3.
            if link_index_0 == 2 and eline_to_link == 0:
                A2_best = A0_best / 3.
            if link_index_0 == 2 and eline_to_link == 1:
                A2_best = A1_best / 3.

    ################################################################################

        if plot == 1:

            plt.plot(wave_range, flux_range, 'k+')
            plt.plot(
                wave_range,
                G_model(wave_range, A0_best, A1_best, A2_best, sigma_best,
                        z_best), "k-")
            plt.plot(wave_range, or_fitted_model, "ro")

        return [sigma_best, [A0_best, A1_best, A2_best], z_best]  #best_vals
예제 #17
0
def poly_fit(xp, yp, grado_pol):

    t_init = polynomial.Polynomial1D(degree=int(grado_pol))
    fit_t = fitting.LevMarLSQFitter()
    t = fit_t(t_init, xp, yp)
    return t
예제 #18
0
파일: fit_2d.py 프로젝트: regran/VIP
def fit_2dgaussian(array, crop=False, cent=None, cropsize=15, fwhmx=4, fwhmy=4, 
                   theta=0, threshold=False, sigfactor=6, full_output=False, 
                   debug=False):
    """ Fitting a 2D Gaussian to the 2D distribution of the data.
    
    Parameters
    ----------
    array : array_like
        Input frame with a single PSF.
    crop : bool, optional
        If True an square sub image will be cropped.
    cent : tuple of int, optional
        X,Y integer position of source in the array for extracting the subimage. 
        If None the center of the frame is used for cropping the subframe (the 
        PSF is assumed to be ~ at the center of the frame). 
    cropsize : int, optional
        Size of the subimage.
    fwhmx, fwhmy : float, optional
        Initial values for the standard deviation of the fitted Gaussian, in px.
    theta : float, optional
        Angle of inclination of the 2d Gaussian counting from the positive X
        axis.
    threshold : bool, optional
        If True the background pixels (estimated using sigma clipped statistics)
        will be replaced by small random Gaussian noise.
    sigfactor : int, optional
        The background pixels will be thresholded before fitting a 2d Gaussian
        to the data using sigma clipped statistics. All values smaller than
        (MEDIAN + sigfactor*STDDEV) will be replaced by small random Gaussian 
        noise. 
    full_output : bool, optional
        If False it returns just the centroid, if True also returns the 
        FWHM in X and Y (in pixels), the amplitude and the rotation angle.
    debug : bool, optional
        If True, the function prints out parameters of the fit and plots the
        data, model and residuals.
        
    Returns
    -------
    mean_y : float
        Source centroid y position on input array from fitting. 
    mean_x : float
        Source centroid x position on input array from fitting.
        
    If ``full_output`` is True it returns a Pandas dataframe containing the
    following columns:
    'amplitude' : Float value. Amplitude of the Gaussian.
    'centroid_x' : Float value. X coordinate of the centroid.
    'centroid_y' : Float value. Y coordinate of the centroid.
    'fwhm_x' : Float value. FHWM in X [px].
    'fwhm_y' : Float value. FHWM in Y [px].
    'theta' : Float value. Rotation angle.
    
    """
    if array.ndim != 2:
        raise TypeError('Input array is not a frame or 2d array')
    
    if crop:
        if cent is None:
            ceny, cenx = frame_center(array)
        else:
            cenx, ceny = cent
        
        imside = array.shape[0]
        psf_subimage, suby, subx = get_square(array, min(cropsize, imside), 
                                              ceny, cenx, position=True)  
    else:
        psf_subimage = array.copy()  
    
    if threshold:
        _, clipmed, clipstd = sigma_clipped_stats(psf_subimage, sigma=2)
        indi = np.where(psf_subimage <= clipmed + sigfactor * clipstd)
        subimnoise = np.random.randn(psf_subimage.shape[0],
                                     psf_subimage.shape[1]) * clipstd
        psf_subimage[indi] = subimnoise[indi]

    # Creating the 2D Gaussian model
    init_amplitude = np.ptp(psf_subimage)
    xcom, ycom = photutils.centroid_com(psf_subimage)
    gauss = models.Gaussian2D(amplitude=init_amplitude, theta=theta,
                              x_mean=xcom, y_mean=ycom,
                              x_stddev=fwhmx * gaussian_fwhm_to_sigma,
                              y_stddev=fwhmy * gaussian_fwhm_to_sigma)
    # Levenberg-Marquardt algorithm
    fitter = fitting.LevMarLSQFitter()
    y, x = np.indices(psf_subimage.shape)
    fit = fitter(gauss, x, y, psf_subimage)

    if crop:
        mean_y = fit.y_mean.value + suby
        mean_x = fit.x_mean.value + subx
    else:
        mean_y = fit.y_mean.value
        mean_x = fit.x_mean.value 
    fwhm_y = fit.y_stddev.value*gaussian_sigma_to_fwhm
    fwhm_x = fit.x_stddev.value*gaussian_sigma_to_fwhm 
    amplitude = fit.amplitude.value
    theta = np.rad2deg(fit.theta.value)
    
    if debug:
        if threshold:
            msg = ['Subimage thresholded', 'Model', 'Residuals']
        else:
            msg = ['Subimage', 'Model', 'Residuals']
        pp_subplots(psf_subimage, fit(x, y), psf_subimage-fit(x, y),
                    grid=True, gridspacing=1, label=msg)
        print('FWHM_y =', fwhm_y)
        print('FWHM_x =', fwhm_x, '\n')
        print('centroid y =', mean_y)
        print('centroid x =', mean_x)
        print('centroid y subim =', fit.y_mean.value)
        print('centroid x subim =', fit.x_mean.value, '\n')
        print('amplitude =', amplitude)
        print('theta =', theta)
    
    if full_output:
        return pd.DataFrame({'centroid_y': mean_y, 'centroid_x': mean_x,
                             'fwhm_y': fwhm_y, 'fwhm_x': fwhm_x,
                             'amplitude': amplitude, 'theta': theta}, index=[0])
    else:
        return mean_y, mean_x
예제 #19
0
    def run(self) -> None:
        """
        Run method of the module. Locates the position of the calibration spots in the center
        frame. From the four spots, the position of the star behind the coronagraph is fitted,
        and the images are shifted and cropped.

        Returns
        -------
        NoneType
            None
        """
        @typechecked
        def _get_center(
            image_number: int, center: Optional[Tuple[int, int]]
        ) -> Tuple[np.ndarray, Tuple[int, int]]:

            if center_shape[-3] > 1:
                warnings.warn(
                    'Multiple center images found. Using the first image of the stack.'
                )

            if ndim == 3:
                center_frame = self.m_center_in_port[0, ]
            elif ndim == 4:
                center_frame = self.m_center_in_port[image_number, 0, ]

            if center is None:
                center = center_pixel(center_frame)
            else:
                center = (int(np.floor(center[0])), int(np.floor(center[1])))

            return center_frame, center

        center_shape = self.m_center_in_port.get_shape()
        im_shape = self.m_image_in_port.get_shape()
        ndim = self.m_image_in_port.get_ndim()

        center_frame, self.m_center = _get_center(0, self.m_center)

        # Read in wavelength information or set it to default values
        if ndim == 4:
            wavelength = self.m_image_in_port.get_attribute('WAVELENGTH')

            if wavelength is None:
                raise ValueError(
                    'The wavelength information is required to centre IFS data. '
                    'Please add it via the WavelengthReadingModule before using '
                    'the WaffleCenteringModule.')

            if im_shape[0] != center_shape[0]:
                raise ValueError(
                    f'Number of science wavelength channels: {im_shape[0]}. '
                    f'Number of center wavelength channels: {center_shape[0]}. '
                    'Exactly one center image per wavelength is required.')

            wavelength_min = np.min(wavelength)

        elif ndim == 3:
            # for none ifs data, use default value
            wavelength = [1.]
            wavelength_min = 1.

        # check if science and center images have the same shape
        if im_shape[-2:] != center_shape[-2:]:
            raise ValueError(
                'Science and center images should have the same shape.')

        # Setting angle via pattern (used for backwards compability)
        if self.m_pattern is not None:

            if self.m_pattern == 'x':
                self.m_angle = 45.

            elif self.m_pattern == '+':
                self.m_angle = 0.

            else:
                raise ValueError(
                    f'The pattern {self.m_pattern} is not valid. Please select '
                    f'either \'x\' or \'+\'.')

            warnings.warn(
                f'The \'pattern\' parameter will be deprecated in a future release. '
                f'Please Use the \'angle\' parameter instead and set it to '
                f'{self.m_angle} degrees.', DeprecationWarning)

        pixscale = self.m_image_in_port.get_attribute('PIXSCALE')

        self.m_sigma /= pixscale

        if self.m_size is not None:
            self.m_size = int(math.ceil(self.m_size / pixscale))

        if self.m_dither:
            dither_x = self.m_image_in_port.get_attribute('DITHER_X')
            dither_y = self.m_image_in_port.get_attribute('DITHER_Y')

            nframes = self.m_image_in_port.get_attribute('NFRAMES')
            nframes = np.cumsum(nframes)
            nframes = np.insert(nframes, 0, 0)

        # size of center image, only works with odd value
        ref_image_size = 21

        # Arrays for the positions
        x_pos = np.zeros(4)
        y_pos = np.zeros(4)

        # Arrays for the center position for each wavelength
        x_center = np.zeros((len(wavelength)))
        y_center = np.zeros((len(wavelength)))

        # Loop for 4 waffle spots
        for w, wave_nr in enumerate(wavelength):

            # Prapre centering frame
            center_frame, _ = _get_center(w, self.m_center)

            center_frame_unsharp = center_frame - gaussian_filter(
                input=center_frame, sigma=self.m_sigma)

            for i in range(4):
                # Approximate positions of waffle spots
                radius = self.m_radius * wave_nr / wavelength_min

                x_0 = np.floor(self.m_center[0] + radius *
                               np.cos(self.m_angle * np.pi / 180 + np.pi / 4. *
                                      (2 * i)))

                y_0 = np.floor(self.m_center[1] + radius *
                               np.sin(self.m_angle * np.pi / 180 + np.pi / 4. *
                                      (2 * i)))

                tmp_center_frame = crop_image(image=center_frame_unsharp,
                                              center=(int(y_0), int(x_0)),
                                              size=ref_image_size)

                # find maximum in tmp image
                coords = np.unravel_index(indices=np.argmax(tmp_center_frame),
                                          shape=tmp_center_frame.shape)

                y_max, x_max = coords[0], coords[1]

                pixmax = tmp_center_frame[y_max, x_max]
                max_pos = np.array([x_max, y_max]).reshape(1, 2)

                # Check whether it is the correct maximum: second brightest pixel should be nearby
                tmp_center_frame[y_max, x_max] = 0.

                # introduce distance parameter
                dist = np.inf

                while dist > 2:
                    coords = np.unravel_index(
                        indices=np.argmax(tmp_center_frame),
                        shape=tmp_center_frame.shape)

                    y_max_new, x_max_new = coords[0], coords[1]

                    pixmax_new = tmp_center_frame[y_max_new, x_max_new]

                    # Caculate minimal distance to previous points
                    tmp_center_frame[y_max_new, x_max_new] = 0.

                    dist = np.amin(
                        np.linalg.norm(np.vstack((max_pos[:, 0] - x_max_new,
                                                  max_pos[:, 1] - y_max_new)),
                                       axis=0))

                    if dist <= 2 and pixmax_new < pixmax:
                        break

                    max_pos = np.vstack((max_pos, [x_max_new, y_max_new]))

                    x_max = x_max_new
                    y_max = y_max_new
                    pixmax = pixmax_new

                x_0 = x_0 - (ref_image_size - 1) / 2 + x_max
                y_0 = y_0 - (ref_image_size - 1) / 2 + y_max

                # create reference image around determined maximum
                ref_center_frame = crop_image(image=center_frame_unsharp,
                                              center=(int(y_0), int(x_0)),
                                              size=ref_image_size)

                # Fit the data using astropy.modeling
                gauss_init = models.Gaussian2D(
                    amplitude=np.amax(ref_center_frame),
                    x_mean=x_0,
                    y_mean=y_0,
                    x_stddev=1.,
                    y_stddev=1.,
                    theta=0.)

                fit_gauss = fitting.LevMarLSQFitter()

                y_grid, x_grid = np.mgrid[y_0 - (ref_image_size - 1) / 2:y_0 +
                                          (ref_image_size - 1) / 2 + 1,
                                          x_0 - (ref_image_size - 1) / 2:x_0 +
                                          (ref_image_size - 1) / 2 + 1]

                gauss = fit_gauss(gauss_init, x_grid, y_grid, ref_center_frame)

                x_pos[i] = gauss.x_mean.value
                y_pos[i] = gauss.y_mean.value

            # Find star position as intersection of two lines

            x_center[w] = ((y_pos[0]-x_pos[0]*(y_pos[2]-y_pos[0])/(x_pos[2]-float(x_pos[0]))) -
                           (y_pos[1]-x_pos[1]*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])))) / \
                          ((y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])) -
                           (y_pos[2]-y_pos[0])/(x_pos[2]-float(x_pos[0])))

            y_center[w] = x_center[w]*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])) + \
                (y_pos[1]-x_pos[1]*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])))

        # Adjust science images
        nimages = self.m_image_in_port.get_shape()[-3]
        npix = self.m_image_in_port.get_shape()[-2]
        nwavelengths = len(wavelength)

        start_time = time.time()

        for i in range(nimages):
            im_storage = []
            for j in range(nwavelengths):
                im_index = i * nwavelengths + j

                progress(im_index, nimages * nwavelengths,
                         'Centering the images...', start_time)

                if ndim == 3:
                    image = self.m_image_in_port[i, ]
                elif ndim == 4:
                    image = self.m_image_in_port[j, i, ]

                shift_yx = np.array([
                    (float(im_shape[-2]) - 1.) / 2. - y_center[j],
                    (float(im_shape[-1]) - 1.) / 2. - x_center[j]
                ])

                if self.m_dither:
                    index = np.digitize(i, nframes, right=False) - 1

                    shift_yx[0] -= dither_y[index]
                    shift_yx[1] -= dither_x[index]

                if npix % 2 == 0 and self.m_size is not None:
                    im_tmp = np.zeros((image.shape[0] + 1, image.shape[1] + 1))
                    im_tmp[:-1, :-1] = image
                    image = im_tmp

                    shift_yx[0] += 0.5
                    shift_yx[1] += 0.5

                im_shift = shift_image(image, shift_yx, 'spline')

                if self.m_size is not None:
                    im_crop = crop_image(im_shift, None, self.m_size)
                    im_storage.append(im_crop)
                else:
                    im_storage.append(im_shift)

            if ndim == 3:
                self.m_image_out_port.append(im_storage[0], data_dim=3)
            elif ndim == 4:
                self.m_image_out_port.append(np.asarray(im_storage),
                                             data_dim=4)

        print(f'Center [x, y] = [{x_center}, {y_center}]')

        history = f'[x, y] = [{round(x_center[j], 2)}, {round(y_center[j], 2)}]'
        self.m_image_out_port.copy_attributes(self.m_image_in_port)
        self.m_image_out_port.add_history('WaffleCenteringModule', history)
        self.m_image_out_port.close_port()
예제 #20
0
파일: fit_2d.py 프로젝트: regran/VIP
def fit_2dairydisk(array, crop=False, cent=None, cropsize=15, fwhm=4,
                 threshold=False, sigfactor=6, full_output=False, debug=False):
    """ Fitting a 2D Moffat to the 2D distribution of the data.

    Parameters
    ----------
    array : array_like
        Input frame with a single PSF.
    crop : bool, optional
        If True an square sub image will be cropped.
    cent : tuple of int, optional
        X,Y integer position of source in the array for extracting the subimage.
        If None the center of the frame is used for cropping the subframe (the
        PSF is assumed to be ~ at the center of the frame).
    cropsize : int, optional
        Size of the subimage.
    fwhm : float, optional
        Initial values for the FWHM of the fitted 2d Moffat, in px.
    threshold : bool, optional
        If True the background pixels (estimated using sigma clipped statistics)
        will be replaced by small random Gaussian noise.
    sigfactor : int, optional
        The background pixels will be thresholded before fitting a 2d Moffat
        to the data using sigma clipped statistics. All values smaller than
        (MEDIAN + sigfactor*STDDEV) will be replaced by small random Gaussian
        noise.
    full_output : bool, optional
        If False it returns just the centroid, if True also returns the
        FWHM in X and Y (in pixels), the amplitude and the rotation angle.
    debug : bool, optional
        If True, the function prints out parameters of the fit and plots the
        data, model and residuals.

    Returns
    -------
    mean_y : float
        Source centroid y position on input array from fitting.
    mean_x : float
        Source centroid x position on input array from fitting.

    If ``full_output`` is True it returns a Pandas dataframe containing the
    following columns:
    'alpha': Float value. Alpha parameter.
    'amplitude' : Float value. Moffat Amplitude.
    'centroid_x' : Float value. X coordinate of the centroid.
    'centroid_y' : Float value. Y coordinate of the centroid.
    'fwhm' : Float value. FHWM [px].
    'gamma' : Float value. Gamma parameter.

    """
    if array.ndim != 2:
        raise TypeError('Input array is not a frame or 2d array')

    if crop:
        if cent is None:
            ceny, cenx = frame_center(array)
        else:
            cenx, ceny = cent

        imside = array.shape[0]
        psf_subimage, suby, subx = get_square(array, min(cropsize, imside),
                                              ceny, cenx, position=True)
    else:
        psf_subimage = array.copy()

    if threshold:
        _, clipmed, clipstd = sigma_clipped_stats(psf_subimage, sigma=2)
        indi = np.where(psf_subimage <= clipmed + sigfactor * clipstd)
        subimnoise = np.random.randn(psf_subimage.shape[0],
                                     psf_subimage.shape[1]) * clipstd
        psf_subimage[indi] = subimnoise[indi]

    # Creating the 2d Airy disk model
    init_amplitude = np.ptp(psf_subimage)
    xcom, ycom = photutils.centroid_com(psf_subimage)
    diam_1st_zero = (fwhm * 2.44) / 1.028
    airy = models.AiryDisk2D(amplitude=init_amplitude, x_0=xcom, y_0=ycom,
                             radius=diam_1st_zero/2.)
    # Levenberg-Marquardt algorithm
    fitter = fitting.LevMarLSQFitter()
    y, x = np.indices(psf_subimage.shape)
    fit = fitter(airy, x, y, psf_subimage)

    if crop:
        mean_y = fit.y_0.value + suby
        mean_x = fit.x_0.value + subx
    else:
        mean_y = fit.y_0.value
        mean_x = fit.x_0.value

    amplitude = fit.amplitude.value
    radius = fit.radius.value
    fwhm = ((radius * 1.028) / 2.44) * 2

    if debug:
        if threshold:
            msg = ['Subimage thresholded', 'Model', 'Residuals']
        else:
            msg = ['Subimage', 'Model', 'Residuals']
        pp_subplots(psf_subimage, fit(x, y), psf_subimage - fit(x, y),
                    grid=True, gridspacing=1, label=msg)
        print('FWHM =', fwhm)
        print('centroid y =', mean_y)
        print('centroid x =', mean_x)
        print('centroid y subim =', fit.y_0.value)
        print('centroid x subim =', fit.x_0.value, '\n')
        print('amplitude =', amplitude)
        print('radius =', radius)

    if full_output:
        return pd.DataFrame({'centroid_y': mean_y, 'centroid_x': mean_x,
                             'fwhm': fwhm, 'radius': radius,
                             'amplitude': amplitude}, index=[0])
    else:
        return mean_y, mean_x
예제 #21
0
def find_stars_single(img_file, fwhm, threshold, N_passes, plot_psf_compare,
                      mask_file, sharp_lim, peak_max):
    pid = mp.current_process().pid

    print(f'  p{pid} - Working on image: {img_file}')
    img, hdr = fits.getdata(img_file, header=True, ignore_missing_end=True)
    mask = fits.getdata(mask_file).astype('bool')
    img = np.ma.masked_array(img, mask=mask)
    fwhm_curr = fwhm

    # Calculate the bacgkround and noise (iteratively)
    print(f'  p{pid} - Calculating background')
    bkg_threshold_above = 1
    bkg_threshold_below = 3

    good_pix = np.where(np.isfinite(img))

    for nn in range(5):
        bkg_mean = img[good_pix].mean()
        bkg_std = img[good_pix].std()

        bad_hi = bkg_mean + (bkg_threshold_above * bkg_std)
        bad_lo = bkg_mean - (bkg_threshold_below * bkg_std)

        good_pix = np.where((img > bad_lo) & (img < bad_hi))

    bkg_mean = img[good_pix].mean()
    bkg_std = img[good_pix].std()
    img_threshold = threshold * bkg_std
    print(f'    p{pid} - Bkg = {bkg_mean:.2f} +/- {bkg_std:.2f}')
    print(f'    p{pid} - Bkg Threshold = {img_threshold:.2f}')

    # Detect stars
    print(f'     p{pid} - Detecting Stars')

    # Each pass will have an updated fwhm for the PSF.
    for nn in range(N_passes):
        print(f'    p{pid} - Pass {nn:d} assuming FWHM = {fwhm_curr:.1f}')
        daofind = DAOStarFinder(fwhm=fwhm_curr,
                                threshold=img_threshold,
                                exclude_border=True,
                                sharplo=-sharp_lim,
                                sharphi=sharp_lim,
                                peakmax=peak_max)
        sources = daofind(img - bkg_mean, mask=mask)
        print(
            f'    p{pid} - {len(sources)} sources found, now fitting for FWHM.'
        )

        # Calculate FWHM for each detected star.
        x_fwhm = np.zeros(len(sources), dtype=float)
        y_fwhm = np.zeros(len(sources), dtype=float)
        theta = np.zeros(len(sources), dtype=float)
        # Calculate measure of fits
        fvu = np.zeros(len(sources), dtype=float)
        lss = np.zeros(len(sources), dtype=float)
        mfr = np.zeros(len(sources), dtype=float)

        # We will actually be resampling the images for the Gaussian fits.
        resamp = 1  #2 #BUG - changed this value for testing bin1 open loop

        cutout_half_size = int(round(fwhm_curr * 3.5))
        cutout_size = 2 * cutout_half_size + 1

        # Define variables to hold final averages PSFs
        final_psf_obs = np.zeros((cutout_size * resamp, cutout_size * resamp),
                                 dtype=float)
        final_psf_mod = np.zeros((cutout_size * resamp, cutout_size * resamp),
                                 dtype=float)
        final_psf_count = 0

        # Setup our gaussian fitter with some good initial guesses.
        sigma_init_guess = fwhm_curr * gaussian_fwhm_to_sigma
        g2d_model = models.Gaussian2D(1.0,
                                      cutout_half_size * resamp,
                                      cutout_half_size * resamp,
                                      sigma_init_guess * resamp,
                                      sigma_init_guess * resamp,
                                      theta=0,
                                      bounds={
                                          'x_stddev': [0, fwhm * 2 * resamp],
                                          'y_stddev': [0, fwhm * 2 * resamp],
                                          'amplitude': [0, 2]
                                      })
        c2d_model = models.Const2D(0.0)

        the_model = g2d_model + c2d_model
        the_fitter = fitting.LevMarLSQFitter()

        cut_y, cut_x = np.mgrid[:cutout_size, :cutout_size]

        for ss in range(len(sources)):
            x_lo = int(round(sources[ss]['xcentroid'] - cutout_half_size))
            x_hi = x_lo + cutout_size
            y_lo = int(round(sources[ss]['ycentroid'] - cutout_half_size))
            y_hi = y_lo + cutout_size

            cutout_tmp = img[y_lo:y_hi, x_lo:x_hi].astype(float)
            if ((cutout_tmp.shape[0] != cutout_size) |
                (cutout_tmp.shape[1] != cutout_size)):
                # Edge source... fitting is no good
                continue

            # Oversample the image
            cutout_resamp = scipy.ndimage.zoom(cutout_tmp, resamp, order=1)
            #cutout_resamp /= cutout_resamp.sum() #normed sum to 1
            cutout_resamp /= cutout_resamp.max(
            )  #normed peak to 1 # BUG: what if bright outlier?
            cut_y_resamp, cut_x_resamp = np.mgrid[:cutout_size *
                                                  resamp, :cutout_size *
                                                  resamp]

            # Fit a 2D gaussian + constant
            with warnings.catch_warnings():
                # Suppress warnings... too many.
                warnings.simplefilter("ignore", category=UserWarning)
                warnings.simplefilter("ignore", category=AstropyWarning)
                g2d_params = the_fitter(
                    the_model,
                    cut_x_resamp,
                    cut_y_resamp,
                    cutout_resamp,
                    epsilon=1e-12,
                    acc=1e-12,
                    maxiter=300,
                    weights=None)  #added values for better fit

            g2d_image = g2d_params(cut_x_resamp, cut_y_resamp)

            # Catch bad fits and ignore.
            if (np.isnan(g2d_params.x_mean_0.value)
                    or (np.abs(g2d_params.x_mean_0.value) >
                        (cutout_size * resamp))
                    or (np.abs(g2d_params.y_mean_0.value) >
                        (cutout_size * resamp))):
                print(f'      p{pid} - Bad fit for {ss}')
                continue

            # Add to our average observed/model PSFs
            if sources['flux'][ss] > 1.9:
                final_psf_count += 1
                final_psf_obs += cutout_resamp
                final_psf_mod += g2d_image

            # Save the FWHM and angle.
            x_fwhm[
                ss] = g2d_params.x_stddev_0.value / gaussian_fwhm_to_sigma / resamp
            y_fwhm[
                ss] = g2d_params.y_stddev_0.value / gaussian_fwhm_to_sigma / resamp
            theta[ss] = g2d_params.theta_0.value
            # calc residuals - based on FWHM
            # relevant part of cutout
            mid_ss = cutout_resamp.shape[0] / 2
            x_hi_ss = int(round(mid_ss + x_fwhm[ss]))
            x_lo_ss = int(round(mid_ss - x_fwhm[ss]))
            y_hi_ss = int(round(mid_ss + y_fwhm[ss]))
            y_lo_ss = int(round(mid_ss - y_fwhm[ss]))
            cutout_resamp_cut = cutout_resamp[y_lo_ss:y_hi_ss, x_lo_ss:x_hi_ss]
            # fit metrics
            diff_img_ss = cutout_resamp_cut - g2d_image[y_lo_ss:y_hi_ss,
                                                        x_lo_ss:x_hi_ss]
            PSF_mean_ss = np.mean(cutout_resamp_cut)
            residual_ss = np.sum(diff_img_ss**2)  # Least Squares Sum (LSS)
            med_fr_ss = np.median(
                np.abs(diff_img_ss /
                       cutout_resamp_cut))  # median fractional residual (MFR)
            fvu_ss = residual_ss / np.sum(
                (cutout_resamp_cut - PSF_mean_ss)**
                2)  # fraction of variance unexplained (FVU)
            # Save the fit
            lss[ss] = residual_ss
            fvu[ss] = fvu_ss
            mfr[ss] = med_fr_ss

            if (plot_psf_compare == True) and (x_lo > 200) and (y_lo > 200):
                #plt.figure(4, figsize=(6, 4))
                vmin = cutout_resamp.min()
                vmax = cutout_resamp.max()

                plt.figure(4, figsize=(12, 3))
                plt.clf()
                # 1. Cut out Source
                plt.subplot(1, 4, 1)
                plt.imshow(cutout_resamp, origin='lower', vmin=vmin, vmax=vmax)
                plt.gca().add_patch(
                    Rectangle((x_lo_ss, y_lo_ss),
                              x_hi_ss - x_lo_ss,
                              y_hi_ss - y_lo_ss,
                              edgecolor='red',
                              facecolor='none',
                              lw=2))
                plt.colorbar(fraction=0.046, pad=0.05)
                plt.title(f'Image (resamp={resamp:d})')
                # 2. Model of source
                plt.subplot(1, 4, 2)
                plt.imshow(g2d_image, origin='lower', vmin=vmin, vmax=vmax)
                plt.gca().add_patch(
                    Rectangle((x_lo_ss, y_lo_ss),
                              x_hi_ss - x_lo_ss,
                              y_hi_ss - y_lo_ss,
                              edgecolor='red',
                              facecolor='none',
                              lw=2))
                plt.colorbar(fraction=0.046, pad=0.05)
                plt.title(f'Model (resamp={resamp:d})')
                # 3. Residual - Subtraction
                plt.subplot(1, 4, 3)
                plt.imshow(cutout_resamp - g2d_image,
                           origin='lower',
                           vmin=-vmax / 6,
                           vmax=vmax / 6)
                plt.gca().add_patch(
                    Rectangle((x_lo, y_lo),
                              x_hi - x_lo,
                              y_hi - y_lo,
                              edgecolor='red',
                              facecolor='none',
                              lw=1))
                plt.colorbar(fraction=0.046, pad=0.04)
                plt.title(f"Data-Model (resamp={resamp:d})")
                # 4. Residual - Fraction
                plt.subplot(1, 4, 4)
                plt.subplots_adjust(left=0.08)
                plt.imshow((cutout_resamp - g2d_image) / cutout_resamp,
                           vmin=-1,
                           vmax=1)  # take out outliers?
                plt.colorbar(fraction=0.046, pad=0.05)
                plt.title('Residual fraction')
                plt.suptitle(
                    f"Source {ss} fit, FWHM x: {x_fwhm[ss]:.2f} y: {y_fwhm[ss]:.2f} | LSS {residual_ss:.2e} | FVU {fvu_ss:.2e} | MFR {med_fr_ss:.2e}"
                )
                plt.tight_layout()
                plt.pause(0.05)

                pdb.set_trace()

            # Some occasional display
            if (plot_psf_compare == True) and (ss % 250 == 0):
                plt.figure(2, figsize=(8, 3))
                plt.clf()
                plt.subplot(1, 2, 1)
                plt.subplots_adjust(left=0.08)
                plt.imshow(final_psf_obs)
                plt.colorbar(fraction=0.25)
                plt.title(f'Obs PSF (resamp = {resamp:d})')

                plt.subplot(1, 2, 2)
                plt.subplots_adjust(left=0.08)
                plt.imshow(final_psf_mod)
                plt.colorbar(fraction=0.25)
                #plt.axis('equal')
                plt.title(f'Mod PSF (resamp = {resamp:d})')
                plt.suptitle(f"Observed vs. Model PSF average fit")
                plt.pause(0.05)

                print(
                    f'    p{pid} - ss={ss} fwhm_x={x_fwhm[ss]:.1f} fwhm_y={y_fwhm[ss]:.1f}'
                )

        sources['x_fwhm'] = x_fwhm
        sources['y_fwhm'] = y_fwhm
        sources['theta'] = theta
        sources['LSS'] = lss
        sources['FVU'] = fvu
        sources['MFR'] = mfr

        # Save the average PSF (flux-weighted). Note we are making a slight mistake
        # here since each PSF has a different sub-pixel position... still same for both
        # obs and model
        final_psf_obs /= final_psf_count
        final_psf_mod /= final_psf_count
        final_psf_obs /= final_psf_obs.sum()
        final_psf_mod /= final_psf_mod.sum()
        # saving psf
        img_dir_name, img_file_name = os.path.split(img_file)
        psf_dir = img_dir_name + '/psf/'
        util.mkdir(psf_dir)
        fits.writeto(psf_dir + img_file_name.replace('.fits', '_psf_obs.fits'),
                     final_psf_obs,
                     hdr,
                     overwrite=True)
        fits.writeto(psf_dir + img_file_name.replace('.fits', '_psf_mod.fits'),
                     final_psf_mod,
                     hdr,
                     overwrite=True)
        #TODO: make starlist specific

        # Drop sources with flux (signifiance) that isn't good enough.
        # Empirically this is <1.2
        # Also drop sources that couldn't be fit.
        good = np.where((sources['flux'] > 1.9) & (sources['x_fwhm'] > 0)
                        & (sources['y_fwhm'] > 0))[0]
        sources = sources[good]

        # Only use the brightest sources for calculating the mean. This is just for printing.
        idx = np.where(sources['flux'] > 5)[0]
        x_fwhm_med = np.median(sources['x_fwhm'][idx])
        y_fwhm_med = np.median(sources['y_fwhm'][idx])

        print(f'      p{pid} - Number of sources = {len(sources)}')
        print(
            f'      p{pid} - Median x_fwhm = {x_fwhm_med:.1f} +/- {sources["x_fwhm"].std():.1f}'
        )
        print(
            f'      p{pid} - Median y_fwhm = {y_fwhm_med:.1f} +/- {sources["y_fwhm"].std():.1f}'
        )

        fwhm_curr = np.mean([x_fwhm_med, y_fwhm_med])

        formats = {
            'xcentroid': '%8.3f',
            'ycentroid': '%8.3f',
            'sharpness': '%.2f',
            'roundness1': '%.2f',
            'roundness2': '%.2f',
            'peak': '%10.1f',
            'flux': '%10.6f',
            'mag': '%6.2f',
            'x_fwhm': '%5.2f',
            'y_fwhm': '%5.2f',
            'theta': '%6.3f',
            'LSS': '%5.2f',
            'FVU': '%5.2f',
            'MFR': '%5.2f',
        }

        sources.write(img_file.replace('.fits', '_stars.txt'),
                      format='ascii.fixed_width',
                      delimiter=None,
                      bookend=False,
                      formats=formats,
                      overwrite=True)

    return
예제 #22
0
    def run(self) -> None:
        """
        Run method of the module. Locates the position of the calibration spots in the center
        frame. From the four spots, the position of the star behind the coronagraph is fitted,
        and the images are shifted and cropped.

        Returns
        -------
        NoneType
            None
        """
        def _get_center(center):
            center_frame = self.m_center_in_port[0, ]

            if center_shape[0] > 1:
                warnings.warn(
                    'Multiple center images found. Using the first image of the stack.'
                )

            if center is None:
                center = center_pixel(center_frame)
            else:
                center = (np.floor(center[0]), np.floor(center[1]))

            return center_frame, center

        self.m_image_out_port.del_all_data()
        self.m_image_out_port.del_all_attributes()

        center_shape = self.m_center_in_port.get_shape()
        im_shape = self.m_image_in_port.get_shape()

        center_frame, self.m_center = _get_center(self.m_center)

        if im_shape[-2:] != center_shape[-2:]:
            raise ValueError(
                'Science and center images should have the same shape.')

        pixscale = self.m_image_in_port.get_attribute('PIXSCALE')

        self.m_sigma /= pixscale

        if self.m_size is not None:
            self.m_size = int(math.ceil(self.m_size / pixscale))

        if self.m_dither:
            dither_x = self.m_image_in_port.get_attribute('DITHER_X')
            dither_y = self.m_image_in_port.get_attribute('DITHER_Y')

            nframes = self.m_image_in_port.get_attribute('NFRAMES')
            nframes = np.cumsum(nframes)
            nframes = np.insert(nframes, 0, 0)

        center_frame_unsharp = center_frame - gaussian_filter(
            input=center_frame, sigma=self.m_sigma)

        # size of center image, only works with odd value
        ref_image_size = 21

        # Arrays for the positions
        x_pos = np.zeros(4)
        y_pos = np.zeros(4)

        # Loop for 4 waffle spots
        for i in range(4):
            # Approximate positions of waffle spots
            if self.m_pattern == 'x':
                x_0 = np.floor(self.m_center[0] +
                               self.m_radius * np.cos(np.pi / 4. *
                                                      (2 * i + 1)))
                y_0 = np.floor(self.m_center[1] +
                               self.m_radius * np.sin(np.pi / 4. *
                                                      (2 * i + 1)))

            elif self.m_pattern == '+':
                x_0 = np.floor(self.m_center[0] +
                               self.m_radius * np.cos(np.pi / 4. * (2 * i)))
                y_0 = np.floor(self.m_center[1] +
                               self.m_radius * np.sin(np.pi / 4. * (2 * i)))

            tmp_center_frame = crop_image(image=center_frame_unsharp,
                                          center=(int(y_0), int(x_0)),
                                          size=ref_image_size)

            # find maximum in tmp image
            coords = np.unravel_index(indices=np.argmax(tmp_center_frame),
                                      shape=tmp_center_frame.shape)

            y_max, x_max = coords[0], coords[1]

            pixmax = tmp_center_frame[y_max, x_max]
            max_pos = np.array([x_max, y_max]).reshape(1, 2)

            # Check whether it is the correct maximum: second brightest pixel should be nearby
            tmp_center_frame[y_max, x_max] = 0.

            # introduce distance parameter
            dist = np.inf

            while dist > 2:
                coords = np.unravel_index(indices=np.argmax(tmp_center_frame),
                                          shape=tmp_center_frame.shape)

                y_max_new, x_max_new = coords[0], coords[1]

                pixmax_new = tmp_center_frame[y_max_new, x_max_new]

                # Caculate minimal distance to previous points
                tmp_center_frame[y_max_new, x_max_new] = 0.

                dist = np.amin(
                    np.linalg.norm(np.vstack((max_pos[:, 0] - x_max_new,
                                              max_pos[:, 1] - y_max_new)),
                                   axis=0))

                if dist <= 2 and pixmax_new < pixmax:
                    break

                max_pos = np.vstack((max_pos, [x_max_new, y_max_new]))

                x_max = x_max_new
                y_max = y_max_new
                pixmax = pixmax_new

            x_0 = x_0 - (ref_image_size - 1) / 2 + x_max
            y_0 = y_0 - (ref_image_size - 1) / 2 + y_max

            # create reference image around determined maximum
            ref_center_frame = crop_image(image=center_frame_unsharp,
                                          center=(int(y_0), int(x_0)),
                                          size=ref_image_size)

            # Fit the data using astropy.modeling
            gauss_init = models.Gaussian2D(amplitude=np.amax(ref_center_frame),
                                           x_mean=x_0,
                                           y_mean=y_0,
                                           x_stddev=1.,
                                           y_stddev=1.,
                                           theta=0.)

            fit_gauss = fitting.LevMarLSQFitter()

            y_grid, x_grid = np.mgrid[y_0 - (ref_image_size - 1) / 2:y_0 +
                                      (ref_image_size - 1) / 2 + 1,
                                      x_0 - (ref_image_size - 1) / 2:x_0 +
                                      (ref_image_size - 1) / 2 + 1]

            gauss = fit_gauss(gauss_init, x_grid, y_grid, ref_center_frame)

            x_pos[i] = gauss.x_mean.value
            y_pos[i] = gauss.y_mean.value

        # Find star position as intersection of two lines

        x_center = ((y_pos[0]-x_pos[0]*(y_pos[2]-y_pos[0])/(x_pos[2]-float(x_pos[0]))) -
                    (y_pos[1]-x_pos[1]*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])))) / \
                   ((y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])) -
                    (y_pos[2]-y_pos[0])/(x_pos[2]-float(x_pos[0])))

        y_center = x_center*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])) + \
            (y_pos[1]-x_pos[1]*(y_pos[1]-y_pos[3])/(x_pos[1]-float(x_pos[3])))

        nimages = self.m_image_in_port.get_shape()[0]
        npix = self.m_image_in_port.get_shape()[1]

        start_time = time.time()
        for i in range(nimages):
            progress(i, nimages, 'Running WaffleCenteringModule...',
                     start_time)

            image = self.m_image_in_port[i, ]

            shift_yx = np.array([(float(im_shape[-2]) - 1.) / 2. - y_center,
                                 (float(im_shape[-1]) - 1.) / 2. - x_center])

            if self.m_dither:
                index = np.digitize(i, nframes, right=False) - 1

                shift_yx[0] -= dither_y[index]
                shift_yx[1] -= dither_x[index]

            if npix % 2 == 0 and self.m_size is not None:
                im_tmp = np.zeros((image.shape[0] + 1, image.shape[1] + 1))
                im_tmp[:-1, :-1] = image
                image = im_tmp

                shift_yx[0] += 0.5
                shift_yx[1] += 0.5

            im_shift = shift_image(image, shift_yx, 'spline')

            if self.m_size is not None:
                im_crop = crop_image(im_shift, None, self.m_size)
                self.m_image_out_port.append(im_crop, data_dim=3)
            else:
                self.m_image_out_port.append(im_shift, data_dim=3)

        sys.stdout.write('Running WaffleCenteringModule... [DONE]\n')
        sys.stdout.write('Center [x, y] = [' + str(x_center) + ', ' +
                         str(y_center) + ']\n')
        sys.stdout.flush()

        history = f'[x, y] = [{round(x_center, 2)}, {round(y_center, 2)}]'
        self.m_image_out_port.copy_attributes(self.m_image_in_port)
        self.m_image_out_port.add_history('WaffleCenteringModule', history)
        self.m_image_out_port.close_port()
예제 #23
0
def getFWHM(psf,
            pixelScale,
            rebin=1,
            method='contour',
            nargout=2,
            center=None,
            std_guess=2):

    # Gaussian and Moffat fitting are not really efficient on
    # anisoplanatic PSF. Prefer the coutour function in such a
    # case. The cutting method is not compliant to PSF not oriented
    #along x or y-axis.

    #Interpolation
    Ny, Nx = psf.shape
    if rebin > 1:
        im_hr = interpolateSupport(psf, rebin * np.array([Nx, Ny]))
    else:
        im_hr = psf

    if method == 'cutting':
        # Brutal approach when the PSF is centered and aligned x-axis FWHM
        imy = im_hr[:, int(Ny * rebin / 2)]
        w = np.where(imy >= imy.max() / 2)[0]
        FWHMy = pixelScale * (w.max() - w.min()) / rebin
        #y-axis FWHM
        imx = im_hr[int(Nx * rebin / 2), :]
        w = np.where(imx >= imx.max() / 2)[0]
        FWHMx = (w.max() - w.min()) / rebin * pixelScale
        theta = 0
    elif method == 'contour':
        # Contour approach~: something wrong about the ellipse orientation
        mpl.interactive(False)
        fig = plt.figure()
        C = plt.contour(im_hr, levels=[im_hr.max() / 2])
        plt.close(fig)
        C = C.collections[0].get_paths()[0]
        C = C.vertices
        xC = C[:, 0]
        yC = C[:, 1]
        # centering the ellispe
        mx = np.array([xC.max(), yC.max()])
        mn = np.array([xC.min(), yC.min()])
        cent = (mx + mn) / 2
        wx = xC - cent[0]
        wy = yC - cent[1]
        # Get the module
        wr = np.hypot(wx, wy) / rebin * pixelScale
        # Getting the FWHM
        FWHMx = 2 * wr.max()
        FWHMy = 2 * wr.min()
        #Getting the ellipse orientation
        xm = wx[wr.argmax()]
        ym = wy[wr.argmax()]
        theta = np.mean(180 * np.arctan2(ym, xm) / np.pi)
        mpl.interactive(True)
    elif method == 'gaussian':
        # Prepare array r with radius in arcseconds
        y, x = np.indices(psf.shape, dtype=float)
        if center is None:
            # Normalize
            psf = psf / psf.max()
            # get exact center of image
            center = tuple((a - 1) / 2.0 for a in psf.shape[::-1])
            x -= center[0]
            y -= center[1]
            Y, X = np.mgrid[:Ny, :Nx] * pixelScale
            std_guess = std_guess * pixelScale
            # Define the model
            g_init = models.Gaussian2D(amplitude=1.,
                                       x_mean=0,
                                       y_mean=0,
                                       x_stddev=std_guess,
                                       y_stddev=std_guess)
            g_init.x_mean.fixed = True
            g_init.y_mean.fixed = True
            fit_g = fitting.LevMarLSQFitter()
            # fit x axis
            g = fit_g(g_init, X - center[0], Y - center[1], psf)
            FWHMx = 2 * np.sqrt(2 * np.log(2)) * np.abs(g.x_stddev)
            FWHMy = 2 * np.sqrt(2 * np.log(2)) * np.abs(g.y_stddev)

    # Get Ellipticity
    aRatio = np.max([FWHMx / FWHMy, FWHMy / FWHMx])

    if nargout == 1:
        return 0.5 * (FWHMx + FWHMy)
    elif nargout == 2:
        return FWHMx, FWHMy
    elif nargout == 3:
        return FWHMx, FWHMy, aRatio
    elif nargout == 4:
        return FWHMx, FWHMy, aRatio, theta
예제 #24
0
def find_best_fit(yeldax,
                  yelday,
                  plot_look=False,
                  pos_txt='sig_trimapril_pos.txt',
                  errtype=1,
                  fitter=None):
    '''
    go throigh order of legendre polynomial
    look at residuals / errors
    Fit with gaussian with sigma of 1
    measure chi squared
    print those number on a plot, call it a day
    '''

    if fitter == None:
        fitter = high_order.LegTransform

    orders = range(3, 10)

    tab = Table.read(pos_txt, format='ascii.fixed_width')
    if errtype == 1:
        tot_err = np.sqrt(tab['xerr']**2 + tab['yerr']**2 +
                          (tab['xrerr'] * 5)**2 + (tab['yrerr'] * 5)**2)
    elif errtype == 2:
        tot_err = np.sqrt(tab['xerr']**2 + tab['yerr']**2)
    for i in orders:
        tapr, dx, dy, gbool, sbool = fit_dist(pos_txt=pos_txt,
                                              order=i,
                                              n_iter_fit=1,
                                              lookup=False)

        dxn = dx[sbool] / tot_err[gbool][sbool]
        dyn = dy[sbool] / tot_err[gbool][sbool]

        xN, xbin_edge = np.histogram(dxn, bins=100, range=(-5, 5))
        yN, ybin_edge = np.histogram(dyn, bins=100, range=(-5, 5))
        #import pdb; pdb.set_trace()
        bcenx = np.zeros(len(xbin_edge) - 1)
        bceny = np.zeros(len(xbin_edge) - 1)
        for dd in range(len(xbin_edge) - 1):
            bcenx[dd] = np.mean(xbin_edge[dd] + xbin_edge[dd + 1]) / 2.0
            bceny[dd] = np.mean(ybin_edge[dd] + ybin_edge[dd + 1]) / 2.0
        #import pdb; pdb.set_trace()
        fit_p = fitting.LevMarLSQFitter()

        gy = models.Gaussian1D(mean=0, stddev=1.0)
        gy.mean.fixed = True
        #gy.stddev.fixed = True

        gx = models.Gaussian1D(mean=0, stddev=1.0)
        gx.mean.fixed = True
        #gx.stddev.fixed = True

        mx = fit_p(gx, bcenx, xN)
        my = fit_p(gy, bceny, yN)

        #import pdb; pdb.set_trace()
        chix = np.sum((mx(bcenx) - xN)**2 / mx(bcenx))
        chiy = np.sum((my(bceny) - yN)**2 / my(bceny))

        plt.figure(1)
        plt.clf()
        plt.scatter(bcenx, xN)
        plt.plot(bcenx, mx(bcenx))
        plt.text(
            np.min(bcenx) + 1,
            np.max(xN) / 2.0, r'$\chi^{2}$: ' + str(chix)[:5])
        plt.text(
            np.min(bcenx) + 1,
            np.max(xN) / 2.0 - 20, r'$\sigma$:' + str(mx.stddev.value)[:6])
        #plt.text(np.min(bcenx)+2, np.max(xN)/2.0-30,'smooth factor: '+str(i))
        plt.title('X residual Leg order' + str(i))
        plt.xlabel('residual / error')
        plt.ylabel('N')
        plt.savefig('Leg_x_resid_ord' + str(i) + '.png')

        plt.figure(2)
        plt.clf()
        #plt.hist(dyn, bins=100)
        plt.scatter(bceny, yN)
        plt.plot(bceny, my(bceny))
        plt.text(
            np.min(bceny) + 1,
            np.max(yN) / 2.0, r'$\chi^{2}$: ' + str(chiy)[:5])
        plt.text(
            np.min(bceny) + 1,
            np.max(yN) / 2.0 - 20, r'$\sigma$:' + str(my.stddev.value)[:6])
        #plt.text(np.min(bceny)+2, np.max(yN)/2.0-30,'smooth factor: '+str(i))
        plt.title('Y residual Leg order' + str(i))
        plt.xlabel('residual / error')
        plt.ylabel('N')
        plt.savefig('Leg_y_resid_ord' + str(i) + '.png')

        plt.figure(3)
        plt.clf()
        lx, ly = leg2lookup(tapr)
        plot_lookup_diff(lx, ly, yeldax, yelday)
        plt.title('Difference Legendre and Yelda')
        plt.savefig('Leg' + str(i) + '_resid_yelda.png')
예제 #25
0
    def test_deriv_1D(self, model_class, test_parameters):
        """
        Test the derivative of a model by comparing results with an estimated
        derivative.
        """

        x_lim = test_parameters['x_lim']

        if model_class.fit_deriv is None or issubclass(model_class,
                                                       PolynomialBase):
            return

        if "log_fit" in test_parameters:
            if test_parameters['log_fit']:
                x = np.logspace(x_lim[0], x_lim[1], self.N)
        else:
            x = np.linspace(x_lim[0], x_lim[1], self.N)

        parameters = test_parameters['parameters']
        model_with_deriv = create_model(model_class,
                                        test_parameters,
                                        use_constraints=False)
        model_no_deriv = create_model(model_class,
                                      test_parameters,
                                      use_constraints=False)

        # NOTE: PR 10644 replaced deprecated usage of RandomState but could not
        #       find a new seed that did not cause test failure, resorted to hardcoding.
        # add 10% noise to the amplitude
        rsn_rand_1234567890 = np.array([
            0.61879477, 0.59162363, 0.88868359, 0.89165480, 0.45756748,
            0.77818808, 0.26706377, 0.99610621, 0.54009489, 0.53752161,
            0.40099938, 0.70540579, 0.40518559, 0.94999075, 0.03075388,
            0.13602495, 0.08297726, 0.42352224, 0.23449723, 0.74743526,
            0.65177865, 0.68998682, 0.16413419, 0.87642114, 0.44733314,
            0.57871104, 0.52377835, 0.62689056, 0.34869427, 0.26209748,
            0.07498055, 0.17940570, 0.82999425, 0.98759822, 0.11326099,
            0.63846415, 0.73056694, 0.88321124, 0.52721004, 0.66487673,
            0.74209309, 0.94083846, 0.70123128, 0.29534353, 0.76134369,
            0.77593881, 0.36985514, 0.89519067, 0.33082813, 0.86108824,
            0.76897859, 0.61343376, 0.43870907, 0.91913538, 0.76958966,
            0.51063556, 0.04443249, 0.57463611, 0.31382006, 0.41221713,
            0.21531811, 0.03237521, 0.04166386, 0.73109303, 0.74556052,
            0.64716325, 0.77575353, 0.64599254, 0.16885816, 0.48485480,
            0.53844248, 0.99690349, 0.23657074, 0.04119088, 0.46501519,
            0.35739006, 0.23002665, 0.53420791, 0.71639475, 0.81857486,
            0.73994342, 0.07948837, 0.75688276, 0.13240193, 0.48465576,
            0.20624753, 0.02298276, 0.54257873, 0.68123230, 0.35887468,
            0.36296147, 0.67368397, 0.29505730, 0.66558885, 0.93652252,
            0.36755130, 0.91787687, 0.75922703, 0.48668067, 0.45967890
        ])
        n = 0.1 * parameters[0] * (rsn_rand_1234567890 - 0.5)

        data = model_with_deriv(x) + n
        fitter_with_deriv = fitting.LevMarLSQFitter()
        new_model_with_deriv = fitter_with_deriv(model_with_deriv, x, data)
        fitter_no_deriv = fitting.LevMarLSQFitter()
        new_model_no_deriv = fitter_no_deriv(model_no_deriv,
                                             x,
                                             data,
                                             estimate_jacobian=True)
        assert_allclose(new_model_with_deriv.parameters,
                        new_model_no_deriv.parameters,
                        atol=0.15)
예제 #26
0
def comp_yelda(yeldax, yelday, yelda_pos='yelda_pos.txt'):
    '''
    goes through successive orders of legendre polynomial and compare the results for fitting the yelda data to the final Yelada distortion map
    '''

    for i in range(3, 8):
        t, outx, outy, dx, dy, sbooln = fit_dist(pos_txt=yelda_pos,
                                                 order=i,
                                                 n_iter_fit=1,
                                                 wtype=2)

        plot_dist(yeldax,
                  outx,
                  title2='Leg:' + str(i),
                  title1='Yelda',
                  title3='Difference',
                  title4='Difference',
                  vmind=-.5,
                  vmaxd=.5,
                  outfile='yelda_plots/Dist_sol_X_' + str(i) + '.png')
        plot_dist(yelday,
                  outy,
                  title2='Leg:' + str(i),
                  title1='Yelda',
                  title3='Difference',
                  title4='Difference',
                  vmind=-.5,
                  vmaxd=.5,
                  outfile='yelda_plots/Dist_sol_Y_' + str(i) + '.png')

        plt.figure(1)
        plt.clf()
        plt.hist((yeldax - outx).flatten(), bins=100, alpha=.5, label='x')
        plt.hist((yelday - outy).flatten(), bins=100, alpha=.5, label='y')
        plt.xlabel('difference (pixels)')
        plt.ylabel('N')
        plt.title('Difference L' + str(i) + ' and Yelda')
        plt.savefig('yelda_plots/residual_' + str(i) + '.png')

        ref = Table.read(yelda_pos, format='ascii.fixed_width')
        tot_err = np.sqrt(ref['xerr']**2 + ref['yerr']**2)
        dxn = dx / tot_err[sbooln]
        dyn = dy / tot_err[sbooln]

        xN, xbin_edge = np.histogram(dxn, bins=100, range=(-10, 10))
        yN, ybin_edge = np.histogram(dyn, bins=100, range=(-10, 10))
        #import pdb; pdb.set_trace()
        bcenx = np.zeros(len(xbin_edge) - 1)
        bceny = np.zeros(len(xbin_edge) - 1)
        for dd in range(len(xbin_edge) - 1):
            bcenx[dd] = np.mean(xbin_edge[dd] + xbin_edge[dd + 1]) / 2.0
            bceny[dd] = np.mean(ybin_edge[dd] + ybin_edge[dd + 1]) / 2.0
        #import pdb; pdb.set_trace()
        fit_p = fitting.LevMarLSQFitter()

        gy = models.Gaussian1D(mean=0, stddev=1.0)
        gy.mean.fixed = True
        #gy.stddev.fixed = True

        gx = models.Gaussian1D(mean=0, stddev=1.0)
        gx.mean.fixed = True
        #gx.stddev.fixed = True

        mx = fit_p(gx, bcenx, xN)
        my = fit_p(gy, bceny, yN)

        #import pdb; pdb.set_trace()
        chix = np.sum((mx(bcenx) - xN)**2 / mx(bcenx))
        chiy = np.sum((my(bceny) - yN)**2 / my(bceny))

        plt.figure(1)
        plt.clf()
        plt.scatter(bcenx, xN)
        plt.plot(bcenx, mx(bcenx))
        plt.text(
            np.min(bcenx) + 1,
            np.max(xN) / 2.0, r'$\chi^{2}$: ' + str(chix)[:5])
        plt.text(
            np.min(bcenx) + 1,
            np.max(xN) / 2.0 + 10, r'$\sigma$:' + str(mx.stddev.value)[:6])
        #plt.text(np.min(bcenx)+2, np.max(xN)/2.0-30,'smooth factor: '+str(i))
        plt.title('X residual Leg order' + str(i))
        plt.xlabel('residual / error')
        plt.ylabel('N')
        plt.savefig('yelda_plots/Leg_x_resid_ord' + str(i) + '.png')

        plt.figure(2)
        plt.clf()
        #plt.hist(dyn, bins=100)
        plt.scatter(bceny, yN)
        plt.plot(bceny, my(bceny))
        plt.text(
            np.min(bceny) + 1,
            np.max(yN) / 2.0, r'$\chi^{2}$: ' + str(chiy)[:5])
        plt.text(
            np.min(bceny) + 1,
            np.max(yN) / 2.0 - +10, r'$\sigma$:' + str(my.stddev.value)[:6])
        #plt.text(np.min(bceny)+2, np.max(yN)/2.0-30,'smooth factor: '+str(i))
        plt.title('Y residual Leg order' + str(i))
        plt.xlabel('residual / error')
        plt.ylabel('N')
        plt.savefig('yelda_plots/Leg_y_resid_ord' + str(i) + '.png')
예제 #27
0
def fit_lines(spectrum, model, fitter=fitting.LevMarLSQFitter(),
              exclude_regions=None, weights=None, window=None,
              **kwargs):
    """
    Fit the input models to the spectrum. The parameter values of the
    input models will be used as the initial conditions for the fit.

    Parameters
    ----------
    spectrum : Spectrum1D
        The spectrum object over which the equivalent width will be calculated.
    model: `~astropy.modeling.Model` or list of `~astropy.modeling.Model`
        The model or list of models that contain the initial guess.
    fitter : `~astropy.modeling.fitting.Fitter`, optional
        Fitter instance to be used when fitting model to spectrum.
    exclude_regions : list of `~specutils.SpectralRegion`
        List of regions to exclude in the fitting.
    weights : list or 'unc', optional
        If 'unc', the unceratinties from the spectrum object are used to
        to calculate the weights. If list/ndarray, represents the weights to
        use in the fitting.
    window : `~specutils.SpectralRegion` or list of `~specutils.SpectralRegion`
        Regions of the spectrum to use in the fitting. If None, then the
        whole spectrum will be used in the fitting.
    Additional keyword arguments are passed directly into the call to the
    ``fitter``.

    Returns
    -------
    models : Compound model of `~astropy.modeling.Model`
        A compound model of models with fitted parameters.

    Notes
    -----
       * Could add functionality to set the bounds in
         ``model`` if they are not set.
       * The models in the list of ``model`` are added
          together and passed as a compound model to the
          `~astropy.modeling.fitting.Fitter` class instance.
    """
    #
    # If we are to exclude certain regions, then remove them.
    #

    if exclude_regions is not None:
        spectrum = excise_regions(spectrum, exclude_regions)

    #
    # Make the model a list if not already
    #

    single_model_in = not isinstance(model, list)
    if single_model_in:
        model = [model]

    #
    # If a single model is passed in then just do that.
    #
    fitted_models = []

    for modeli, model_guess in enumerate(model):

        #
        # Determine the window if it is not None.  There
        # are several options here:
        #   window = 4 * u.Angstrom -> Quantity
        #   window = (4*u.Angstrom, 6*u.Angstrom) -> tuple
        #   window = (4, 6)*u.Angstrom -> Quantity
        #

        #
        #  Determine the window if there is one
        #

        if window is not None and isinstance(window, list):
            model_window = window[modeli]
        elif window is not None:
            model_window = window
        else:
            model_window = None

        #
        # Check to see if the model has units. If it does not
        # have units then we are going to ignore them.
        #

        ignore_units = getattr(model_guess, model_guess.param_names[0]).unit is None

        fit_model = _fit_lines(spectrum, model_guess, fitter,
                               exclude_regions, weights, model_window,
                               ignore_units, **kwargs)

        fitted_models.append(fit_model)

    if single_model_in:
        fitted_models = fitted_models[0]

    return fitted_models
예제 #28
0
Image_Data_All = fits1.data[:,:]
Image_Data_All2 = Image_Data_All[300:400]

#Define a running median calculator
def RunMedian(x,N):
    idx = np.arange(N) + np.arange(len(x)-N+1)[:,None]
    b = [row[row>0] for row in x[idx]]
    return np.array(map(np.median,b))


#Create the Gaussian and Moffat fits and creates Fit_Data and Fit_Data2
#which contains the parameters for the two models (Moffat still does not work correct)
x = np.linspace(-50,50,100)
Gauss_Model = models.Gaussian1D(amplitude = 1000., mean = 0, stddev = 1.)
Moffat_Model = models.Moffat1D(amplitude = 1000, x_0 = 0, gamma = 1, alpha = 2)
Fitting_Model = fitting.LevMarLSQFitter()

Fit_Data = []
Fit_Data_2 = []

for i in range(0, Image_Data_All2.shape[1]):
    Fit_Data_2.append(Fitting_Model(Gauss_Model, x, Image_Data_All2[:,i]))

#for i in range(0, Image_Data_All2.shape[1]):
#    Fit_Data_2.append(Fitting_Model(Moffat_Model, x, Image_Data_All2[:,i]))

for i in range(0, Image_Data_All2.shape[1]):
    if Fit_Data:  # true if not an empty list
        Gauss_Model = models.Gaussian1D(amplitude=Fit_Data[-1].amplitude,
                                        mean=Fit_Data[-1].mean,
                                        stddev=Fit_Data[-1].stddev)
예제 #29
0
fwhm = 2.355
import numpy as np, pyfits, cPickle
from matplotlib.patches import Ellipse
from astropy.modeling import models, fitting
fit_p = fitting.LevMarLSQFitter()
from scipy.optimize import curve_fit
from scipy.special import erf


def beam_factor(xpix, ypix, freqGHz, ratios, noise_list):
    nSamples = 10000
    factor = freqGHz / 60 * 0.5
    pctrs = pctrs = [(750, 750), (917.42261089116289, 452.48369657494271),
                     (806.96861768041856, 452.42720948105159),
                     (917.27641014690346, 643.54361577204429),
                     (806.91944976081186, 643.48717830145449),
                     (972.55227473819843, 548.05291404475804),
                     (862.1467847912545, 547.96840887824237),
                     (751.74125821542486, 547.93998944819577),
                     (1027.8765912332021, 452.59629406062078),
                     (1027.6333576756713, 643.65611434189077),
                     (696.56242900649295, 643.48680190600885),
                     (1082.9577056577434, 548.19350494100092),
                     (972.35753377858964, 739.11284658633997),
                     (862.04908851816867, 739.02841569859129),
                     (751.7406066611278, 739.00002124865318),
                     (696.5145640484626, 452.42683275461894),
                     (1027.3900902000746, 834.6959976649191),
                     (917.13018901551754, 834.58359802467032),
                     (806.87027498486566, 834.52721018446596),
                     (696.61030063911267, 834.52683411992791),
예제 #30
0
def _fit_lines(spectrum,
               model,
               fitter=fitting.LevMarLSQFitter(calc_uncertainties=True),
               exclude_regions=None,
               weights=None,
               window=None,
               get_fit_info=False,
               ignore_units=False,
               **kwargs):
    """
    Fit the input model (initial conditions) to the spectrum.  Output will be
    the same model with the parameters set based on the fitting.

    spectrum, model -> model
    """
    #
    # If we are to exclude certain regions, then remove them.
    #

    if exclude_regions is not None:
        spectrum = excise_regions(spectrum, exclude_regions)

    if isinstance(weights, str):
        if weights == 'unc':
            uncerts = spectrum.uncertainty

            # Astropy fitters expect weights in 1/sigma
            if uncerts is not None:
                weights = uncerts.array**-1
            else:
                warnings.warn("Uncertainty values are not defined, but are "
                              "trying to be used in model fitting.")
        else:
            raise ValueError("Unrecognized value `%s` in keyword argument.",
                             weights)
    elif weights is not None:
        # Assume that the weights argument is list-like
        weights = np.array(weights)

    mask = spectrum.mask

    dispersion = spectrum.spectral_axis

    flux = spectrum.flux
    flux_unit = spectrum.flux.unit

    #
    # Determine the window if it is not None.  There
    # are several options here:
    #   window = 4 * u.Angstrom -> Quantity
    #   window = (4*u.Angstrom, 6*u.Angstrom) -> tuple
    #   window = (4, 6)*u.Angstrom -> Quantity
    #

    #
    #  Determine the window if there is one
    #

    # In this case the window defines the area around the center of each model
    window_indices = None
    if window is not None and isinstance(window, (float, int)):
        center = model.mean
        window_indices = np.nonzero((dispersion >= center - window)
                                    & (dispersion < center + window))

    # In this case the window is the start and end points of where we
    # should fit
    elif window is not None and isinstance(window, tuple):
        window_indices = np.nonzero((dispersion >= window[0])
                                    & (dispersion <= window[1]))

    # in this case the window is spectral regions that determine where
    # to fit.
    elif window is not None and isinstance(window, SpectralRegion):
        idx1, idx2 = window.bounds
        if idx1 == idx2:
            raise IndexError("Tried to fit a region containing no pixels.")

        # HACK WARNING! This uses the extract machinery to create a set of
        # indices by making an "index spectrum"
        # note that any unit will do but Jy is at least flux-y
        # TODO: really the spectral region machinery should have the power
        # to create a mask, and we'd just use that...
        idxarr = np.arange(spectrum.flux.size).reshape(spectrum.flux.shape)
        index_spectrum = Spectrum1D(spectral_axis=dispersion,
                                    flux=u.Quantity(idxarr, u.Jy, dtype=int))

        extracted_regions = extract_region(index_spectrum, window)
        if isinstance(extracted_regions, list):
            if len(extracted_regions) == 0:
                raise ValueError('The whole spectrum is windowed out!')
            window_indices = np.concatenate(
                [s.flux.value.astype(int) for s in extracted_regions])
        else:
            if len(extracted_regions.flux) == 0:
                raise ValueError('The whole spectrum is windowed out!')
            window_indices = extracted_regions.flux.value.astype(int)

    if window_indices is not None:
        dispersion = dispersion[window_indices]
        flux = flux[window_indices]
        if mask is not None:
            mask = mask[window_indices]
        if weights is not None:
            weights = weights[window_indices]

    if flux is None or len(flux) == 0:
        raise Exception("Spectrum flux is empty or None.")

    input_spectrum = spectrum

    spectrum = Spectrum1D(
        flux=flux.value * flux_unit,
        spectral_axis=dispersion,
        wcs=input_spectrum.wcs,
        velocity_convention=input_spectrum.velocity_convention,
        rest_value=input_spectrum.rest_value)

    if not model._supports_unit_fitting:
        # Not all astropy models support units.  For those that don't
        # we will strip the units and then re-add them before returning
        # the model.
        model, dispersion, flux = _strip_units_from_model(
            model, spectrum, convert=not ignore_units)

    #
    # Do the fitting of spectrum to the model.
    #
    if mask is not None:
        nmask = ~mask
        dispersion = dispersion[nmask]
        flux = flux[nmask]
        if weights is not None:
            weights = weights[nmask]

    fit_model = fitter(model, dispersion, flux, weights=weights, **kwargs)

    if hasattr(fitter, 'fit_info') and get_fit_info:
        fit_model.meta['fit_info'] = fitter.fit_info

    if not model._supports_unit_fitting:
        fit_model = QuantityModel(fit_model, spectrum.spectral_axis.unit,
                                  spectrum.flux.unit)

    return fit_model