예제 #1
0
def test_ShiftModel():
    # Shift by a scalar
    m = models.Shift(42)
    assert m(0) == 42
    assert_equal(m([1, 2]), [43, 44])

    # Shift by a list
    m = models.Shift([42, 43], n_models=2)
    assert_equal(m(0), [42, 43])
    assert_equal(m([1, 2], model_set_axis=False), [[43, 44], [44, 45]])
예제 #2
0
def test_calculate_affine_matrices(angle, scale, xoffset, yoffset):
    m = ((models.Scale(scale) & models.Scale(scale)) | models.Rotation2D(angle)
         | (models.Shift(xoffset) & models.Shift(yoffset)))
    affine = adwcs.calculate_affine_matrices(m, (100, 100))
    assert_allclose(affine.offset, (yoffset, xoffset), atol=1e-10)
    angle = math.radians(angle)
    assert_allclose(affine.matrix,
                    ((scale * math.cos(angle), scale * math.sin(angle)),
                     (-scale * math.sin(angle), scale * math.cos(angle))),
                    atol=1e-10)
예제 #3
0
def test_transforms_compound(tmpdir):
    tree = {
        'compound':
        astmodels.Shift(1) & astmodels.Shift(2) | astmodels.Sky2Pix_TAN()
        | astmodels.Rotation2D()
        | astmodels.AffineTransformation2D([[2, 0], [0, 2]], [42, 32]) +
        astmodels.Rotation2D(32)
    }

    helpers.assert_roundtrip_tree(tree, tmpdir)
예제 #4
0
파일: test_wcs.py 프로젝트: mcara/gwcs
def test_to_fits_sip_pc_normalization(gwcs_simple_imaging_units, matrix_type):
    y, x = np.mgrid[:1024:10, :1024:10]
    xflat = np.ravel(x[1:-1, 1:-1])
    yflat = np.ravel(y[1:-1, 1:-1])
    bounding_box = ((0, 1024), (0, 1024))

    # create a simple imaging WCS without distortions:
    cdmat = np.array([[1.29e-5, 5.95e-6], [5.02e-6, -1.26e-5]])
    aff = models.AffineTransformation2D(matrix=cdmat, name='rotation')

    offx = models.Shift(-501, name='x_translation')
    offy = models.Shift(-501, name='y_translation')

    wcslin = (offx & offy) | aff

    n2c = models.RotateNative2Celestial(5.63, -72.05, 180, name='sky_rotation')
    tan = models.Pix2Sky_TAN(name='tangent_projection')

    wcs_forward = wcslin | tan | n2c

    sky_cs = cf.CelestialFrame(reference_frame=coord.ICRS(), name='sky')
    pipeline = [('detector', wcs_forward), (sky_cs, None)]

    wcs_lin = wcs.WCS(
        input_frame=cf.Frame2D(name='detector'),
        output_frame=sky_cs,
        forward_transform=pipeline
    )

    _, _, celestial_group = wcs_lin._separable_groups(detect_celestial=True)
    fits_wcs = wcs_lin._to_fits_sip(
        celestial_group=celestial_group,
        keep_axis_position=False,
        bounding_box=bounding_box,
        max_pix_error=0.1,
        degree=None,
        max_inv_pix_error=0.1,
        inv_degree=None,
        npoints=32,
        crpix=None,
        projection='TAN',
        matrix_type=matrix_type,
        verbose=False
    )
    fitssip = astwcs.WCS(fits_wcs)

    fitsvalx, fitsvaly = fitssip.wcs_pix2world(xflat, yflat, 0)
    inv_fitsvalx, inv_fitsvaly = fitssip.wcs_world2pix(fitsvalx, fitsvaly, 0)
    gwcsvalx, gwcsvaly = wcs_lin(xflat, yflat)

    assert_allclose(gwcsvalx, fitsvalx, atol=4e-11, rtol=0)
    assert_allclose(gwcsvaly, fitsvaly, atol=4e-11, rtol=0)

    assert_allclose(xflat, inv_fitsvalx, atol=5e-9, rtol=0)
    assert_allclose(yflat, inv_fitsvaly, atol=5e-9, rtol=0)
예제 #5
0
def fpa2asdf(fpafile, outname, ref_kw):
    """
    Create an asdf reference file with the FPA description.

    The CDP2 delivery includes a fits file - "FPA.fpa" which is the
    input to this function. This file is converted to asdf and is a
    reference file of type "FPA".

    nirspec_fs_ref_tools.fpa2asdf('Ref_Files/CoordTransform/Description/FPA.fpa', 'fpa.asdf')

    Parameters
    ----------
    fpafile : str
        A fits file with FPA description (FPA.fpa)
    outname : str
        Name of output ASDF file.
    """
    with open(fpafile) as f:
        lines = [l.strip() for l in f.readlines()]

    # NRS1
    ind = lines.index("*SCA491_PitchX")
    scalex_nrs1 = models.Scale(1 / float(lines[ind + 1]), name='fpa_scale_x')
    ind = lines.index("*SCA491_PitchY")
    scaley_nrs1 = models.Scale(1 / float(lines[ind + 1]), name='fpa_scale_y')
    ind = lines.index("*SCA491_RotAngle")
    rot_nrs1 = models.Rotation2D(np.rad2deg(-float(lines[ind + 1])),
                                 name='fpa_rotation')
    ind = lines.index("*SCA491_PosX")
    shiftx_nrs1 = models.Shift(-float(lines[ind + 1]), name='fpa_shift_x')
    ind = lines.index("*SCA491_PosY")
    shifty_nrs1 = models.Shift(-float(lines[ind + 1]), name='fpa_shift_y')

    # NRS2
    ind = lines.index("*SCA492_PitchX")
    scalex_nrs2 = models.Scale(1 / float(lines[ind + 1]), name='fpa_scale_x')
    ind = lines.index("*SCA492_PitchY")
    scaley_nrs2 = models.Scale(1 / float(lines[ind + 1]), name='fpa_scale_y')
    ind = lines.index("*SCA492_RotAngle")
    rot_nrs2 = models.Rotation2D(np.rad2deg(float(lines[ind + 1])),
                                 name='fpa_rotation')
    ind = lines.index("*SCA492_PosX")
    shiftx_nrs2 = models.Shift(-float(lines[ind + 1]), name='fpa_shift_x')
    ind = lines.index("*SCA492_PosY")
    shifty_nrs2 = models.Shift(-float(lines[ind + 1]), name='fpa_shift_y')
    tree = ref_kw.copy()
    tree['NRS1'] = (shiftx_nrs1 & shifty_nrs1) | rot_nrs1 | (scalex_nrs1
                                                             & scaley_nrs1)
    tree['NRS2'] = (shiftx_nrs2 & shifty_nrs2) | rot_nrs2 | (scalex_nrs2
                                                             & scaley_nrs2)
    fasdf = AsdfFile()
    fasdf.tree = tree
    fasdf.write_to(outname)
    return fasdf
예제 #6
0
def time_init_7_with_units():
    aff = models.AffineTransformation2D(matrix=[[1, 0], [0, 1]] * u.arcsec,
                                        translation=[0, 0] * u.arcsec)
    aff.input_units_equivalencies = {
        'x': u.pixel_scale(1 * u.arcsec / u.pix),
        'y': u.pixel_scale(1 * u.arcsec / u.pix)
    }
    m = (models.Shift(-10.5 * u.pix) & models.Shift(-13.2 * u.pix) | aff
         | models.Scale(.01 * u.arcsec) & models.Scale(.04 * u.arcsec)
         | models.Pix2Sky_TAN() | models.RotateNative2Celestial(
             5.6 * u.deg, -72.05 * u.deg, 180 * u.deg))
예제 #7
0
def gwcs_spec_cel_time_4d():
    """
    A complex 4D mixed celestial + spectral + time WCS.
    """
    # spectroscopic frame:
    wave_model = models.Shift(-5) | models.Multiply(3.7) | models.Shift(20)
    wave_model.bounding_box = (7, 50)
    wave_frame = cf.SpectralFrame(name='wave',
                                  unit=u.m,
                                  axes_order=(0, ),
                                  axes_names=('lambda', ))

    # time frame:
    time_model = models.Identity(1)  # models.Linear1D(10, 0)
    time_frame = cf.TemporalFrame(Time("2010-01-01T00:00"),
                                  name='time',
                                  unit=u.s,
                                  axes_order=(3, ))

    # Values from data/acs.hdr:
    crpix = (12, 13)
    crval = (5.63, -72.05)
    cd = [[1.291E-05, 5.9532E-06], [5.02215E-06, -1.2645E-05]]
    aff = models.AffineTransformation2D(matrix=cd, name='rotation')
    offx = models.Shift(-crpix[0], name='x_translation')
    offy = models.Shift(-crpix[1], name='y_translation')
    wcslin = models.Mapping((1, 0)) | (offx & offy) | aff
    tan = models.Pix2Sky_TAN(name='tangent_projection')
    n2c = models.RotateNative2Celestial(*crval, 180, name='sky_rotation')
    cel_model = wcslin | tan | n2c
    icrs = cf.CelestialFrame(reference_frame=coord.ICRS(),
                             name='sky',
                             axes_order=(2, 1))

    wcs_forward = wave_model & cel_model & time_model

    comp_frm = cf.CompositeFrame(frames=[wave_frame, icrs, time_frame],
                                 name='TEST 4D FRAME')

    detector_frame = cf.CoordinateFrame(name="detector",
                                        naxes=4,
                                        axes_order=(0, 1, 2, 3),
                                        axes_type=("pixel", "pixel", "pixel",
                                                   "pixel"),
                                        unit=(u.pix, u.pix, u.pix, u.pix))

    w = wcs.WCS(forward_transform=wcs_forward,
                output_frame=comp_frm,
                input_frame=detector_frame)

    w.bounding_box = ((0, 63), (0, 127), (0, 255), (0, 9))
    w.array_shape = (10, 256, 128, 64)
    w.pixel_shape = (64, 128, 256, 10)
    return w
예제 #8
0
파일: test_wcs.py 프로젝트: mcara/gwcs
def test_compound_bounding_box():
    trans3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
    pipeline = [('detector', trans3), ('sky', None)]
    w = wcs.WCS(pipeline)
    cbb = {
        1: ((-1, 10), (6, 15)),
        2: ((-1, 5), (3, 17)),
        3: ((-3, 7), (1, 27)),
    }
    if new_bbox:
        # Test attaching a valid bounding box (ignoring input 'x')
        w.attach_compound_bounding_box(cbb, [('x',)])
        from astropy.modeling.bounding_box import CompoundBoundingBox
        cbb = CompoundBoundingBox.validate(trans3, cbb, selector_args=[('x',)], order='F')
        assert w.bounding_box == cbb
        assert w.bounding_box is trans3.bounding_box

        # Test evaluating
        assert_allclose(w(13, 2, 1), (np.nan, np.nan, np.nan))
        assert_allclose(w(13, 2, 2), (np.nan, np.nan, np.nan))
        assert_allclose(w(13, 0, 3), (np.nan, np.nan, np.nan))
        # No bounding box for selector
        with pytest.raises(RuntimeError):
            w(13, 13, 4)

        # Test attaching a invalid bounding box (not ignoring input 'x')
        with pytest.raises(ValueError):
            w.attach_compound_bounding_box(cbb, [('x', False)])
    else:
        with pytest.raises(NotImplementedError) as err:
            w.attach_compound_bounding_box(cbb, [('x',)])
        assert str(err.value) == 'Compound bounding box is not supported for your version of astropy'

    # Test that bounding_box with quantities can be assigned and evaluates
    trans = models.Shift(10 * u .pix) & models.Shift(2 * u.pix)
    pipeline = [('detector', trans), ('sky', None)]
    w = wcs.WCS(pipeline)
    cbb = {
        1 * u.pix: (1 * u.pix, 5 * u.pix),
        2 * u.pix: (2 * u.pix, 6 * u.pix)
    }
    if new_bbox:
        w.attach_compound_bounding_box(cbb, [('x1',)])

        from astropy.modeling.bounding_box import CompoundBoundingBox
        cbb = CompoundBoundingBox.validate(trans, cbb, selector_args=[('x1',)], order='F')
        assert w.bounding_box == cbb
        assert w.bounding_box is trans.bounding_box

        assert_allclose(w(-1*u.pix, 1*u.pix), (np.nan, np.nan))
        assert_allclose(w(7*u.pix, 2*u.pix), (np.nan, np.nan))
    else:
        with pytest.raises(NotImplementedError) as err:
            w.attach_compound_bounding_box(cbb, [('x1',)])
예제 #9
0
def test_validate_transform(tmp_path):
    """
    Tests that custom types, like transform, can be validated.
    """
    file_path = tmp_path / "test.asdf"
    with TransformModel(transform=models.Shift(1) & models.Shift(2),
                        strict_validation=True) as m:
        m.validate()
        m.save(file_path)

    with TransformModel(file_path, strict_validation=True) as m:
        m.validate()
예제 #10
0
파일: test_wcs.py 프로젝트: rendinam/gwcs
def test_domain():
    trans3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
    pipeline = [('detector', trans3), ('sky', None)]
    w = wcs.WCS(pipeline)
    bb = ((-1, 10), (6, 15))
    with pytest.raises(DimensionalityError):
        w.bounding_box = bb
    trans2 = models.Shift(10) & models.Scale(2)
    pipeline = [('detector', trans2), ('sky', None)]
    w = wcs.WCS(pipeline)
    w.bounding_box = bb
    assert w.bounding_box == w.forward_transform.bounding_box[::-1]
예제 #11
0
def test_validate_transform():
    """
    Tests that custom types, like transform, can be validated.
    """
    m = CollimatorModel(model=models.Shift(1) & models.Shift(2),
                        strict_validation=True)
    m.meta.description = "Test validate a WCS reference file."
    m.meta.author = "ND"
    m.meta.pedigree = "GROUND"
    m.meta.useafter = "2018/06/18"
    m.meta.reftype = "collimator"
    m.validate()
예제 #12
0
def load_wcs(input_model, reference_files={}):
    """
    Create a gWCS object and store it in ``Model.meta``.

    Parameters
    ----------
    input_model : `~jwst.datamodels.DataModel`
        The exposure.
    reference_files : dict
        A dict {reftype: reference_file_name} containing all
        reference files that apply to this exposure.
    """

    if "wcsinfo" not in input_model.meta:
        input_model.meta.cal_step.assign_wcs = "SKIPPED"
        log.warning("assign_wcs: SKIPPED")
        return input_model
    else:
        output_model = input_model.copy()
        shift_by_crpix = models.Shift(
            -(input_model.meta.wcsinfo.crpix1 - 1) * u.pix
        ) & models.Shift(-(input_model.meta.wcsinfo.crpix2 - 1) * u.pix)
        pix2sky = getattr(
            models, "Pix2Sky_{}".format(input_model.meta.wcsinfo.ctype1[-3:])
        )()
        celestial_rotation = models.RotateNative2Celestial(
            input_model.meta.wcsinfo.crval1 * u.deg,
            input_model.meta.wcsinfo.crval2 * u.deg,
            180 * u.deg,
        )
        pix2sky.input_units_equivalencies = {
            "x": u.pixel_scale(input_model.meta.wcsinfo.cdelt1 * u.deg / u.pix),
            "y": u.pixel_scale(input_model.meta.wcsinfo.cdelt2 * u.deg / u.pix),
        }
        det2sky = shift_by_crpix | pix2sky | celestial_rotation
        det2sky.name = "linear_transform"
        detector_frame = cf.Frame2D(
            name="detector", axes_names=("x", "y"), unit=(u.pix, u.pix)
        )
        sky_frame = cf.CelestialFrame(
            reference_frame=getattr(
                coord, input_model.meta.coordinates.reference_frame
            )(),
            name="sky_frame",
            unit=(u.deg, u.deg),
        )
        pipeline = [(detector_frame, det2sky), (sky_frame, None)]

        wcs = WCS(pipeline)
        output_model.meta.wcs = wcs
        output_model.meta.cal_step.assign_wcs = "COMPLETE"
    return output_model
예제 #13
0
파일: wcs.py 프로젝트: DBerke/DRAGONS
def fitswcs_linear(header):
    """
    Create WCS linear transforms for any axes not associated with
    celestial coordinates. We require that each world axis aligns
    precisely with only a single pixel axis.

    Parameters
    ----------
    header : `astropy.io.fits.Header` or dict
        FITS Header or dict with basic FITS WCS keywords.

    """
    # We *always* want the wavelength solution model to be called "WAVE"
    # even if the CTYPE keyword is "AWAV"
    model_name_mapping = {"AWAV": "WAVE"}

    if isinstance(header, fits.Header):
        wcs_info = read_wcs_from_header(header)
    elif isinstance(header, dict):
        wcs_info = header
    else:
        raise TypeError("Expected a FITS Header or a dict.")

    cd = wcs_info['CD']
    crpix = wcs_info['CRPIX']
    crval = wcs_info['CRVAL']
    # get the part of the CD matrix corresponding to the imaging axes
    sky_axes, spec_axes, unknown = get_axes(wcs_info)
    if not sky_axes and len(unknown) == 2:
        unknown = []

    linear_models = []
    for ax in spec_axes + unknown:
        pixel_axes = _get_contributing_axes(wcs_info, ax)
        if len(pixel_axes) == 1:
            pixel_axis = pixel_axes[0]
            linear_model = (models.Shift(1 - crpix[pixel_axis],
                                         name='crpix' + str(pixel_axis + 1))
                            | models.Scale(cd[ax, pixel_axis])
                            | models.Shift(crval[ax]))
            ctype = wcs_info['CTYPE'][ax][:4].upper()
            linear_model.name = model_name_mapping.get(ctype, ctype)
            linear_model.outputs = (wcs_info['CTYPE'][ax], )
            linear_model.meta.update({
                'input_axes': pixel_axes,
                'output_axes': [ax]
            })
            linear_models.append(linear_model)
        else:
            raise ValueError(f"Axis {ax} depends on more than one input axis")

    return linear_models
예제 #14
0
def test_domain():
    trans3 = models.Shift(10) & models.Scale(2) & models.Shift(-1)
    pipeline = [('detector', trans3), ('sky', None)]
    w = wcs.WCS(pipeline)
    domain = [{'lower': -1, 'upper': 10, 'include_lower': True, 'include_upper': False, 'step': .1},
              {'lower': 6, 'upper': 15, 'include_lower': False, 'include_upper': True, 'step': .5}]
    with pytest.raises(ValueError):
        w.domain = domain
    trans2 = models.Shift(10) & models.Scale(2)
    pipeline = [('detector', trans2), ('sky', None)]
    w = wcs.WCS(pipeline)
    w.domain = domain
    assert w.domain == w.forward_transform.meta['domain']
예제 #15
0
def test_coupled_compound_model_nested():
    ccm = CoupledCompoundModel("&", m.Shift(5) & m.Scale(2), m.Scale(10) | m.Shift(3))
    new = roundtrip_object(ccm)
    assert isinstance(new, CoupledCompoundModel)
    assert isinstance(new.left, CompoundModel)
    assert isinstance(new.left.left, m.Shift)
    assert isinstance(new.left.right, m.Scale)
    assert isinstance(new.right, CompoundModel)
    assert isinstance(new.right.left, m.Scale)
    assert isinstance(new.right.right, m.Shift)

    assert ccm.n_inputs == new.n_inputs
    assert ccm.inputs == new.inputs
예제 #16
0
def test_create_wcs(tmpdir):
    m1 = models.Shift(12.4) & models.Shift(-2)
    icrs = cf.CelestialFrame(name='icrs', reference_frame=coord.ICRS())
    det = cf.Frame2D(name='detector', axes_order=(0, 1))
    gw1 = wcs.WCS(output_frame='icrs',
                  input_frame='detector',
                  forward_transform=m1)
    gw2 = wcs.WCS(output_frame='icrs', forward_transform=m1)
    gw3 = wcs.WCS(output_frame=icrs, input_frame=det, forward_transform=m1)

    assert_wcs_roundtrip(gw1, tmpdir)
    assert_wcs_roundtrip(gw2, tmpdir)
    assert_wcs_roundtrip(gw3, tmpdir)
예제 #17
0
def gwcs_cube_with_separable_time(request):
    """
    A mixed celestial + time WCS.
    """
    cube_size = (64, 32, 128)

    axes_order = request.param
    time_axes_order = (axes_order.index(2), )
    cel_axes_order = (axes_order.index(0), axes_order.index(1))

    detector_frame = cf.CoordinateFrame(name="detector",
                                        naxes=3,
                                        axes_order=(0, 1, 2),
                                        axes_type=("pixel", "pixel", "pixel"),
                                        unit=(u.pix, u.pix, u.pix))

    # time frame:
    time_model = models.Identity(1)  # models.Linear1D(10, 0)
    time_frame = cf.TemporalFrame(Time("2010-01-01T00:00"),
                                  name='time',
                                  unit=u.s,
                                  axes_order=time_axes_order)

    # Values from data/acs.hdr:
    crpix = (12, 13)
    crval = (5.63, -72.05)
    cd = [[1.291E-05, 5.9532E-06], [5.02215E-06, -1.2645E-05]]
    aff = models.AffineTransformation2D(matrix=cd, name='rotation')
    offx = models.Shift(-crpix[0], name='x_translation')
    offy = models.Shift(-crpix[1], name='y_translation')
    wcslin = models.Mapping((1, 0)) | (offx & offy) | aff
    tan = models.Pix2Sky_TAN(name='tangent_projection')
    n2c = models.RotateNative2Celestial(*crval, 180, name='sky_rotation')
    cel_model = wcslin | tan | n2c
    icrs = cf.CelestialFrame(reference_frame=coord.ICRS(),
                             name='sky',
                             axes_order=cel_axes_order)

    wcs_forward = (cel_model & time_model) | models.Mapping(axes_order)

    comp_frm = cf.CompositeFrame(frames=[icrs, time_frame],
                                 name='TEST 3D FRAME WITH TIME')

    w = wcs.WCS(forward_transform=wcs_forward,
                output_frame=comp_frm,
                input_frame=detector_frame)

    w.bounding_box = tuple((0, k - 1) for k in cube_size)
    w.pixel_shape = cube_size
    w.array_shape = w.pixel_shape[::-1]
    return w
예제 #18
0
def test_create_wcs(tmpdir):
    m1 = models.Shift(12.4) & models.Shift(-2)
    m2 = models.Scale(2) & models.Scale(-2)
    icrs = cf.CelestialFrame(name='icrs', reference_frame=coord.ICRS())
    det = cf.Frame2D(name='detector', axes_order=(0, 1))
    gw1 = wcs.WCS(output_frame='icrs',
                  input_frame='detector',
                  forward_transform=m1)
    gw2 = wcs.WCS(output_frame='icrs', forward_transform=m1)
    gw3 = wcs.WCS(output_frame=icrs, input_frame=det, forward_transform=m1)

    tree = {'gw1': gw1, 'gw2': gw2, 'gw3': gw3}

    helpers.assert_roundtrip_tree(tree, tmpdir)
예제 #19
0
def test_compound_bounding_box_pass_with_ignored():
    model = models.Shift(1) & models.Shift(2) & models.Identity(1)
    model.inputs = ('x', 'y', 'slit_id')
    bbox = {(0,): (-0.5, 1047.5),
            (1,): (-0.5, 2047.5), }
    cbbox = CompoundBoundingBox.validate(model, bbox, selector_args=[('slit_id', True)],
                                         ignored=['y'], order='F')
    model.bounding_box = cbbox

    model = models.Shift(1) & models.Shift(2) & models.Identity(1)
    model.inputs = ('x', 'y', 'slit_id')
    bind_compound_bounding_box(model, bbox, selector_args=[('slit_id', True)],
                               ignored=['y'], order='F')
    assert model.bounding_box == cbbox
예제 #20
0
파일: util.py 프로젝트: bernie-simon/jwst
def subarray_transform(input_model):
    """
    Inputs are in full frame coordinates.
    If a subarray observation - shift the inputs.

    """
    xstart = input_model.meta.subarray.xstart
    ystart = input_model.meta.subarray.ystart
    if xstart is None:
        xstart = 1
    if ystart is None:
        ystart = 1
    subarray2full = astmodels.Shift(xstart - 1) & astmodels.Shift(ystart - 1)
    return subarray2full
예제 #21
0
def create_channel_selector(alpha, lam, channel, beta, ch_v2, ch_v3):
    if channel == 1:
        nslice = range(101, 122)  #21
    elif channel == 2:
        nslice = range(201, 218)  #17
    elif channel == 3:
        nslice = 16
    elif channel == 4:
        nslice = 12
    else:
        raise ValueError("Incorrect channel #")

    # transformation from local system (alpha, beta) to V2/V3
    p_v2 = models.Polynomial2D(2)
    p_v3 = models.Polynomial2D(2)
    p_v2.c0_0, p_v2.c0_1, p_v2.c1_0, p_v2.c1_1 = ch_v2[1:]
    p_v3.c0_0, p_v3.c0_1, p_v3.c1_0, p_v3.c1_1 = ch_v3[1:]
    ab_v2v3 = p_v2 & p_v3

    ind = []
    for i in range(5):
        for j in range(5):
            ind.append((i, j))

    selector = {}
    # In the paper the formula is (x-xs)^j*y^i, so the 'x' corresponds
    # to y in modeling. - swapped in Mapping
    axs = alpha.field('x_s')
    lxs = lam.field('x_s')
    #for i in range(nslice):
    for i, sl in enumerate(nslice):
        ashift = models.Shift(axs[i])
        lshift = models.Shift(lxs[i])
        palpha = models.Polynomial2D(8)
        plam = models.Polynomial2D(8)
        for index, coeff in zip(ind, alpha[i][1:]):
            setattr(palpha, 'c{0}_{1}'.format(index[0], index[1]), coeff)
        for index, coeff in zip(ind, lam[i][1:]):
            setattr(plam, 'c{0}_{1}'.format(index[0], index[1]), coeff)
        alpha_model = ashift & models.Identity(1) | palpha
        lam_model = lshift & models.Identity(1) | plam
        beta_model = models.Const1D(beta[0] + (i - 1) * beta[1])
        # Note swapping of axes
        a_b_l = models.Mapping(
            (1, 0, 0, 1, 0)) | alpha_model & beta_model & lam_model
        v2_v3_l = a_b_l | models.Mapping(
            (0, 1, 0, 1, 2)) | ab_v2v3 & models.Identity(1)
        selector[sl] = v2_v3_l
    # return alpha, beta, lambda
    return selector
예제 #22
0
파일: test_wcs.py 프로젝트: mcara/gwcs
def test_initialize_wcs_with_list():
    # test that you can initialize a wcs with a pipeline that is a list
    # containing both Step() and (frame, transform) tuples

    # make pipline consisting of tuples and Steps
    shift1 = models.Shift(10 * u .pix) & models.Shift(2 * u.pix)
    shift2 = models.Shift(3 * u.pix)
    pipeline = [('detector', shift1), wcs.Step('extra_step', shift2)]

    extra_step = ('extra_step', None)
    pipeline.append(extra_step)

    # make sure no warnings occur when creating wcs with this pipeline
    wcs.WCS(pipeline)
예제 #23
0
def test_compound_model_mixed_array_scalar_bounding_box():
    """Regression test for issue #12319"""

    model = models.Shift(1) & models.Shift(2) & models.Identity(1)
    model.inputs = ('x', 'y', 'slit_id')
    bbox = ModelBoundingBox.validate(model, ((-0.5, 1047.5), (-0.5, 2047.5), (-np.inf, np.inf)), order='F')
    model.bounding_box = bbox
    x = np.array([1000, 1001])
    y = np.array([2000, 2001])
    slit_id = 0

    # Everything works when its all in the bounding box
    value0 = model(x, y, slit_id)
    value1 = model(x, y, slit_id, with_bounding_box=True)
    assert_equal(value0, value1)
예제 #24
0
def test_custom_and_analytical():
    m1 = custom_and_analytical_inverse()
    m = astmodels.Shift(1) & astmodels.Shift(2) | m1
    fa = AsdfFile()
    fa.tree['model'] = m
    fa.write_to('custom_and_analytical_inverse.asdf')
    f = asdf.open('custom_and_analytical_inverse.asdf')
    assert f.tree['model'].inverse is not None

    m = astmodels.Shift(1) & m1
    fa = AsdfFile()
    fa.tree['model'] = m
    fa.write_to('custom_and_analytical_inverse.asdf')
    f = asdf.open('custom_and_analytical_inverse.asdf')
    assert f.tree['model'].inverse is not None
예제 #25
0
def gwcs_cube_with_separable_spectral(request):
    cube_size = (128, 64, 100)

    axes_order = request.param
    spectral_axes_order = (axes_order.index(2), )
    cel_axes_order = (axes_order.index(0), axes_order.index(1))

    # Values from data/acs.hdr:
    crpix = (64, 32)
    crval = (5.63056810618, -72.0545718428)
    cd = [[1.29058667557984E-05, 5.95320245884555E-06],
          [5.02215195623825E-06, -1.2645010396976E-05]]

    aff = models.AffineTransformation2D(matrix=cd, name='rotation')
    offx = models.Shift(-crpix[0], name='x_translation')
    offy = models.Shift(-crpix[1], name='y_translation')

    wcslin = (offx & offy) | aff
    tan = models.Pix2Sky_TAN(name='tangent_projection')
    n2c = models.RotateNative2Celestial(*crval, 180, name='sky_rotation')
    icrs = cf.CelestialFrame(reference_frame=coord.ICRS(),
                             name='sky',
                             axes_order=cel_axes_order)
    spec = cf.SpectralFrame(name='wave',
                            unit=[
                                u.m,
                            ],
                            axes_order=spectral_axes_order,
                            axes_names=('lambda', ))
    comp_frm = cf.CompositeFrame(frames=[icrs, spec],
                                 name='TEST 3D FRAME WITH SPECTRAL AXIS')
    wcs_forward = ((wcslin & models.Identity(1)) | (tan & models.Identity(1)) |
                   (n2c & models.Identity(1)) | models.Mapping(axes_order))

    detector_frame = cf.CoordinateFrame(name="detector",
                                        naxes=3,
                                        axes_order=(0, 1, 2),
                                        axes_type=("pixel", "pixel", "pixel"),
                                        unit=(u.pix, u.pix, u.pix))

    w = wcs.WCS(forward_transform=wcs_forward,
                output_frame=comp_frm,
                input_frame=detector_frame)
    w.bounding_box = tuple((0, k - 1) for k in cube_size)
    w.pixel_shape = cube_size
    w.array_shape = w.pixel_shape[::-1]

    return w, axes_order
예제 #26
0
def test_2d_affine_transform():
    """Test a simple 2D transform with and without flux conservation"""
    size = 10
    x = np.arange(size * size, dtype=float).reshape(size, size)
    # We still lose the pixels at either end, resulting in a 18x18-pixel array
    m = models.Shift(0.5) | models.Scale(2) | models.Shift(-0.5)

    dg = transform.DataGroup([x], [transform.Transform(m & m)])

    output = dg.transform()
    y = output['data'][1:-1, 1:-1].reshape(8,2,8,2).mean(axis=3).mean(axis=1)
    assert np.array_equal(x[1:-1, 1:-1], y)

    output = dg.transform(conserve=True)
    y = output['data'][1:-1, 1:-1].reshape(8,2,8,2).sum(axis=3).sum(axis=1)
    assert np.array_equal(x[1:-1, 1:-1], y)
예제 #27
0
def create_poly_models(data, channel, coeff_names, name):
    """
    Create a 2D polynomial model for the transformation
    detector --> local MIRI frame
    Works for alpha and lambda coordinates.
    """
    nslices = len(data)
    sl = channel * 100 + np.arange(1, nslices + 1)

    transforms = {}
    for i in range(nslices):
        sl = channel * 100 + i + 1
        al = data[i]
        xs = al[0]
        coeffs = {}
        for c, val in zip(coeff_names, al[1:]):
            coeffs[c] = val

        # As of CDP-8b both the IDT transform as the pipeline use 0-indexed pixels, and
        # include the 4 reference pixels in their counting.  Therefore we do not need to
        # apply any index shift, just the transform.
        thisxform = models.Identity(1) & models.Shift(
            -xs) | models.Polynomial2D(8, name=name, **coeffs)
        # Put the models together
        transforms[sl] = thisxform

    return transforms
예제 #28
0
    def _generate_wcs_transform(dispaxis):
        """Create mock gwcs.WCS object for resampled s2d data"""
        detector = cf.Frame2D(name='detector',
                              axes_order=(0, 1),
                              unit=(u.pix, u.pix))
        icrs = cf.CelestialFrame(name='icrs',
                                 reference_frame=coord.ICRS(),
                                 axes_order=(0, 1),
                                 unit=(u.deg, u.deg),
                                 axes_names=('RA', 'DEC'))
        spec = cf.SpectralFrame(name='spec',
                                axes_order=(2, ),
                                unit=(u.micron, ),
                                axes_names=('lambda', ))
        world = cf.CompositeFrame(name="world", frames=[icrs, spec])

        if dispaxis == 1:
            mapping = models.Mapping((0, 1, 0))
        if dispaxis == 2:
            mapping = models.Mapping((0, 1, 1))

        transform = mapping | (models.Const1D(42) & models.Const1D(42)
                               & (models.Shift(30) | models.Scale(0.1)))
        pipeline = [(detector, transform), (world, None)]
        wcs = WCS(pipeline)

        return wcs
예제 #29
0
def create_xy_models(data, channel, coeff_names, name):
    """
    Create a 2D polynomial model for the transformation
    local_MIRI --> detector frame.
    """
    nslices = len(data)
    sl = channel * 100 + np.arange(1, nslices + 1)
    shname = "shift_{0}".format(name)
    pname = "polynomial_{0}".format(name)
    transforms = {}
    for i in range(nslices):
        sl = channel * 100 + i + 1
        al = data[i]
        xs = al[0]
        coeffs = {}
        for c, val in zip(coeff_names, al[1:]):
            coeffs[c] = val

        # As of CDP-8b both the IDT transform as the pipeline use 0-indexed pixels, and
        # include the 4 reference pixels in their counting.  Therefore we do not need to
        # apply any index shift, just the transform.
        thisxform = models.Shift(
            -xs, name=shname) & models.Identity(1) | models.Polynomial2D(
                8, name=pname, **coeffs)
        transforms[sl] = thisxform

    return transforms
예제 #30
0
def ifu(input_model, reference_files):
    """
    Create the WCS pipeline for a MIRI IFU observation.
    """

    #reference_files = {'distortion': 'jwst_miri_distortion_00001.asdf', #files must hold 2 channels each
                        #'specwcs': 'jwst_miri_specwcs_00001.asdf',
                        #'regions': 'jwst_miri_regions_00001.asdf',
                        #'v2v3': 'jwst_miri_v2v3_00001.asdf'
                        #'wavelengthrange': 'jwst_miri_wavelengthrange_0001.asdf'}
    detector = cf.Frame2D(name='detector', axes_order=(0, 1), unit=(u.pix, u.pix))
    alpha_beta = cf.Frame2D(name='alpha_beta_spatial', axes_order=(0, 1), unit=(u.arcsec, u.arcsec), axes_names=('alpha', 'beta'))
    spec_local = cf.SpectralFrame(name='alpha_beta_spectral', axes_order=(2,), unit=(u.micron,), axes_names=('lambda',))
    miri_focal = cf.CompositeFrame([alpha_beta, spec_local], name='alpha_beta')
    xyan_spatial = cf.Frame2D(name='Xan_Yan_spatial', axes_order=(0, 1), unit=(u.arcmin, u.arcmin), axes_names=('v2', 'v3'))
    spec = cf.SpectralFrame(name='Xan_Yan_spectral', axes_order=(2,), unit=(u.micron,), axes_names=('lambda',))
    xyan = cf.CompositeFrame([xyan_spatial, spec], name='Xan_Yan')
    v23_spatial = cf.Frame2D(name='V2_V3_spatial', axes_order=(0, 1), unit=(u.arcmin, u.arcmin), axes_names=('v2', 'v3'))
    spec = cf.SpectralFrame(name='V2_v3_spectral', axes_order=(2,), unit=(u.micron,), axes_names=('lambda',))
    v2v3 = cf.CompositeFrame([v23_spatial, spec], name='V2_V3')
    icrs = cf.CelestialFrame(name='icrs', reference_frame=coord.ICRS(),
                             axes_order=(0, 1), unit=(u.deg, u.deg), axes_names=('RA', 'DEC'))
    sky = cf.CompositeFrame([icrs, spec], name='sky_and_wavelength')
    det2alpha_beta = (detector_to_alpha_beta(input_model, reference_files)).rename(
        "detector_to_alpha_beta")
    ab2xyan = (alpha_beta2XanYan(input_model, reference_files)).rename("alpha_beta_to_Xan_Yan")
    xyan2v23 = models.Identity(1) & (models.Shift(7.8) | models.Scale(-1)) & models.Identity(1)
    fitswcs_transform = pointing.create_fitswcs_transform(input_model) & models.Identity(1)
    pipeline = [(detector, det2alpha_beta),
                (miri_focal, ab2xyan),
                (xyan, xyan2v23),
                (v2v3, fitswcs_transform),
                (sky, None)
                ]
    return pipeline