def fit_res(x, res):
    fitter = fitting.LevMarLSQFitter()
    p1_init = powerlaws.PowerLaw1D(res[:, 0].max(), 1, 0.5)
    p2_init = powerlaws.PowerLaw1D(res[:, 1].max(), 1, 0.5)
    p3_init = powerlaws.PowerLaw1D(res[:, 2].max(), 1, 0.5)
    p1_init.alpha.fixed = True
    p2_init.alpha.fixed = True
    p3_init.alpha.fixed = True
    p1_fit = fitter(p1_init, x, res[:, 0])
    p2_fit = fitter(p2_init, x, res[:, 1])
    p3_fit = fitter(p3_init, x, res[:, 2])
    return p1_fit, p2_fit, p3_fit
예제 #2
0
def test_powerlaw(scale=5., alpha=2.):
    x = np.linspace(10, 100)
    y = scale * (x)**(-alpha)
    plm = powerlaws.PowerLaw1D(1, 1, 1)
    fitter = fitting.LevMarLSQFitter()
    result = fitter(plm, x, y)
    print("Result: ", result)
    print("plm.params: ", plm)
    return plm
예제 #3
0
 def from_tree_transform(self, node):
     return powerlaws.PowerLaw1D(amplitude=node['amplitude'],
                                 x_0=node['x_0'],
                                 alpha=node['alpha'])
예제 #4
0
파일: AlphaHyperion.py 프로젝트: yaolun/sa
    def getAlpha(spec, wave_center, plot=False, plotname=None):
        """
        spec = {'Wavelength(um)': wave,
                'Flux_Density(Jy)': flux,
                'Uncertainty(Jy)': unc}
        """
        from astropy.modeling import models, fitting, powerlaws
        from scipy.interpolate import interp1d
        import astropy.constants as const
        import numpy as np
        c = const.c.cgs.value

        # initial guess
        x_ref = c / 1e5 / wave_center
        f_flux = interp1d(c / 1e5 / spec['Wavelength(um)'],
                          spec['Flux_Density(Jy)'])
        amp = f_flux(x_ref)
        alpha = 0

        # unit conversions
        freq_dum = (c/1e5/spec['Wavelength(um)'])\
                   [(c/1e5/spec['Wavelength(um)']>= x_ref-100) & (c/1e5/spec['Wavelength(um)']<= x_ref+100)]
        flux_dum = spec['Flux_Density(Jy)']\
                   [(c/1e5/spec['Wavelength(um)']>= x_ref-100) & (c/1e5/spec['Wavelength(um)']<= x_ref+100)]

        pow_model = powerlaws.PowerLaw1D(amp, x_ref, alpha)
        fitter = fitting.LevMarLSQFitter()
        fit = fitter(pow_model, freq_dum, flux_dum)

        alpha = -fit.alpha.value
        if fitter.fit_info['param_cov'] is None:
            alpha_err = np.nan
        else:
            alpha_err = fitter.fit_info['param_cov'][2, 2]**0.5

        if plot:
            # to avoid X server error
            import matplotlib as mpl
            mpl.use('Agg')
            #
            import matplotlib.pyplot as plt

            fig = plt.figure(figsize=(10, 6))
            ax = fig.add_subplot(111)
            ax.plot(freq_dum, flux_dum, 'o')
            ax.plot(freq_dum, fit(freq_dum), '-', color='k')
            ax.text(0.6,
                    0.05,
                    r'$\alpha_{500} = %3.2f \pm %3.2f$' % (alpha, alpha_err),
                    transform=ax.transAxes,
                    fontsize=18)
            [
                ax.spines[axis].set_linewidth(1.5)
                for axis in ['top', 'bottom', 'left', 'right']
            ]
            ax.minorticks_on()
            ax.tick_params('both',
                           labelsize=18,
                           width=1.5,
                           which='major',
                           pad=10,
                           length=5)
            ax.tick_params('both',
                           labelsize=18,
                           width=1.5,
                           which='minor',
                           pad=10,
                           length=2.5)
            ax.set_xlabel('Frequency [GHz]', fontsize=18)
            ax.set_ylabel('Flux Density [Jy]', fontsize=18)
            ax.set_xlim([400, 2000])

            fig.savefig(plotname + 'Alpha500Hyperion.pdf',
                        format='pdf',
                        dpi=300,
                        bbox_inches='tight')
            fig.clf()

        return (alpha, alpha_err)
예제 #5
0
def spire_spectral_index(outdir, obsid, obj):

    # to avoid X server error
    import matplotlib as mpl
    mpl.use('Agg')
    #
    # Note that the spectral index works in frequency
    import matplotlib.pyplot as plt
    from astropy.modeling import models, fitting, powerlaws
    from scipy.interpolate import interp1d
    import astropy.constants as const
    from astropy.io import ascii
    import numpy as np
    c = const.c.cgs.value

    # Read in spectra
    spire_sect = ascii.read(outdir + obsid + '_spire_sect.txt', data_start=4)

    fig = plt.figure(figsize=(10, 6))
    ax = fig.add_subplot(111)

    spire, = ax.plot(c / 1e5 / spire_sect['wave_segm1_0'],
                     spire_sect['flux_segm1_0'],
                     linewidth=1,
                     color='b')
    ax.plot(c / 1e5 / spire_sect['wave_segm2_0'],
            spire_sect['flux_segm2_0'],
            linewidth=1,
            color='r')

    f_ssw = interp1d(c / 1e5 / spire_sect['wave_segm2_0'],
                     spire_sect['flux_segm2_0'])
    f_slw = interp1d(c / 1e5 / spire_sect['wave_segm1_0'],
                     spire_sect['flux_segm1_0'])
    fitted_alpha = []
    fitted_alpha_err = []

    for band in [250, 350, 500]:
        x_ref = c / 1e5 / band
        if band != 250:
            amp = f_slw(x_ref)
            freq_dum = (c/1e5/spire_sect['wave_segm1_0'])\
                       [(c/1e5/spire_sect['wave_segm1_0'] >= x_ref-100) & (c/1e5/spire_sect['wave_segm1_0'] <= x_ref+100)]
            flux_dum = spire_sect['flux_segm1_0']\
                       [(c/1e5/spire_sect['wave_segm1_0'] >= x_ref-100) & (c/1e5/spire_sect['wave_segm1_0'] <= x_ref+100)]
        else:
            amp = f_ssw(x_ref)
            freq_dum = (c/1e5/spire_sect['wave_segm2_0'])\
                       [(c/1e5/spire_sect['wave_segm2_0'] >= x_ref-100) & (c/1e5/spire_sect['wave_segm2_0'] <= x_ref+100)]
            flux_dum = spire_sect['flux_segm2_0']\
                       [(c/1e5/spire_sect['wave_segm2_0'] >= x_ref-100) & (c/1e5/spire_sect['wave_segm2_0'] <= x_ref+100)]
        alpha = 0

        pow_model = powerlaws.PowerLaw1D(amp, x_ref, alpha)
        fitter = fitting.LevMarLSQFitter()
        fit = fitter(pow_model, freq_dum, flux_dum)

        ax.plot(freq_dum, fit(freq_dum), '-', color='k')
        # take negative sign because the frequency array is reversed
        fitted_alpha.append(-fit.alpha.value)
        # the uncertainty part somehow does work on bettyjo.
        # probably something wrong with the python config
        if 'bettyjo' not in archive_dir:
            fitted_alpha_err.append(fitter.fit_info['param_cov'][2, 2]**0.5)
            print - fit.alpha.value, '+/-', fitter.fit_info['param_cov'][
                2, 2]**0.5
        else:
            fitted_alpha_err.append(0)
            print - fit.alpha.value

    ax.text(0.35,
            0.15,
            r'$\alpha_{250,350,500} = %3.2f, %3.2f, %3.2f$' %
            (fitted_alpha[0], fitted_alpha[1], fitted_alpha[2]),
            transform=ax.transAxes,
            fontsize=18)
    ax.text(0.35,
            0.05,
            r'$\sigma_{\alpha}\,(250,350,500) = %5.3f, %5.3f, %5.3f$' %
            (fitted_alpha_err[0], fitted_alpha_err[1], fitted_alpha_err[2]),
            transform=ax.transAxes,
            fontsize=18)
    [
        ax.spines[axis].set_linewidth(1.5)
        for axis in ['top', 'bottom', 'left', 'right']
    ]
    ax.minorticks_on()
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='major',
                   pad=10,
                   length=5)
    ax.tick_params('both',
                   labelsize=18,
                   width=1.5,
                   which='minor',
                   pad=10,
                   length=2.5)
    ax.set_xlabel('Frequency [GHz]', fontsize=18)
    ax.set_ylabel('Flux Density [Jy]', fontsize=18)
    ax.set_xlim([400, 2000])

    fig.savefig(outdir + obj + '_spire_alpha.pdf',
                format='pdf',
                dpi=300,
                bbox_inches='tight')
    fig.clf()

    # write out the alpha index
    foo = open(outdir + obj + '_alpha.txt', 'w')
    foo.write('250um \t 350um \t 500um \n')
    foo.write('%8.6f \t %8.6f \t %8.6f \n' %
              (fitted_alpha[0], fitted_alpha[1], fitted_alpha[2]))
    foo.write('%8.6f \t %8.6f \t %8.6f \n' %
              (fitted_alpha_err[0], fitted_alpha_err[1], fitted_alpha_err[2]))
    foo.close()