def test_bootstrap_replicate_01(self): np.random.seed(42) matrix = np.random.uniform(-1, 1, 9).reshape(3, 3) weights = np.ones((3, 1)) / 3 ss = Subspaces(dim=1) wei = ss._bootstrap_replicate(matrix, weights)[1] np.testing.assert_array_almost_equal(weights, wei)
def test_partition_03(self): np.random.seed(42) matrix = np.random.uniform(-1, 1, 9).reshape(3, 3) ss = Subspaces() ss.evects = matrix with self.assertRaises(TypeError): ss.partition(dim=2.0)
def test_partition_02(self): np.random.seed(42) matrix = np.random.uniform(-1, 1, 9).reshape(3, 3) ss = Subspaces(dim=2) ss.evects = matrix ss._partition() np.testing.assert_array_almost_equal(matrix[:, 2:], ss.W2)
def test_partition_05(self): np.random.seed(42) matrix = np.random.uniform(-1, 1, 9).reshape(3, 3) ss = Subspaces(dim=4) ss.evects = matrix with self.assertRaises(ValueError): ss._partition()
def test_plot_sufficient_summary(self): ss = Subspaces(dim=1) inputs = np.diag(np.ones(3)) outputs = np.ones(3).reshape(3, 1) with self.assertRaises(ValueError): ss.plot_sufficient_summary(inputs, outputs, figsize=(7, 7), title='Sufficient_summary_plots')
def test_bootstrap_replicate_02(self): np.random.seed(42) matrix = np.random.uniform(-1, 1, 9).reshape(3, 3) weights = np.ones((3, 1)) / 3 ss = Subspaces(dim=1) mat = ss._bootstrap_replicate(matrix, weights)[0] true_matrix = np.array([[-0.88383278, 0.73235229, 0.20223002], [0.19731697, -0.68796272, -0.68801096], [-0.25091976, 0.90142861, 0.46398788]]) np.testing.assert_array_almost_equal(true_matrix, mat)
def test_init_W1(self): ss = Subspaces(dim=1) self.assertIsNone(ss.W1)
def test_inverse_transform(self): ss = Subspaces(dim=1) with self.assertRaises(NotImplementedError): ss.inverse_transform(10, 10)
def test_init_dim(self): ss = Subspaces() self.assertIsNone(ss.dim)
def test_fit(self): ss = Subspaces(dim=1) with self.assertRaises(NotImplementedError): ss.fit()
def test_transform(self): ss = Subspaces(dim=1) with self.assertRaises(NotImplementedError): ss.transform(42)
def test_init_subs_br(self): ss = Subspaces(dim=1) self.assertIsNone(ss.subs_br)
def test_init_dim(self): ss = Subspaces(dim=1) self.assertEqual(ss.dim, 1)
def test_init_cov_matrix(self): ss = Subspaces() self.assertIsNone(ss.cov_matrix)
def test_init_evals_br(self): ss = Subspaces() self.assertIsNone(ss.evals_br)
def test_plot_eigenvectors(self): ss = Subspaces(dim=1) with self.assertRaises(ValueError): ss.plot_eigenvectors(n_evects=2, title='Eigenvectors')
def test_plot_eigenvalues(self): ss = Subspaces(dim=1) with self.assertRaises(ValueError): ss.plot_eigenvalues(figsize=(7, 7), title='Eigenvalues')
def test_compute(self): ss = Subspaces() with self.assertRaises(NotImplementedError): ss.compute()
def test_backward(self): ss = Subspaces() with self.assertRaises(NotImplementedError): ss.backward(10, 10)
def test_forward(self): ss = Subspaces() with self.assertRaises(NotImplementedError): ss.forward(42)
def test_init_evects(self): ss = Subspaces(dim=1) self.assertIsNone(ss.evects)
def test_init_W2(self): ss = Subspaces() self.assertIsNone(ss.W2)