예제 #1
0
 def test_fileread(self, tmpdir):
     contentfile = os.path.join(str(tmpdir), 'content.txt')
     with open(contentfile, 'w') as f:
         f.write(self.content)
     
     with uber_open_rmode(contentfile) as f:
         content = f.read()
     assert content.decode('UTF-8') == self.content
    def test_fileread(self, tmpdir):
        contentfile = os.path.join(str(tmpdir), 'content.txt')
        with open(contentfile, 'w') as f:
            f.write(self.content)

        with uber_open_rmode(contentfile) as f:
            content = f.read()
        assert content.decode('UTF-8') == self.content
예제 #3
0
    def test_objectread(self, tmpdir):
        contentfile = os.path.join(tmpdir, 'content.txt')
        with open(contentfile, 'w') as f:
            f.write(self.content)

        with open(contentfile, 'rb') as openf:
            with uber_open_rmode(openf) as f:
                content = f.read()
        assert content.decode('UTF-8') == self.content
예제 #4
0
파일: Log.py 프로젝트: UoS-msam/atomman
    def read(self, log_info, append=True):
        """Parses a LAMMPS screen output/log file for thermodynamic data."""

        #Remove existing data if append is False
        if append is False:
            self.__simulations = []

        #Handle file names, strings and open file-like objects equivalently
        with uber_open_rmode(log_info) as log_info:

            headers = []
            footers = []
            i = 0

            #for all lines in file/output
            for line in log_info:

                #skip blank lines
                if len(line.split()) == 0:
                    continue

                #This is listed before both run and minimize simulations
                if 'Memory usage per processor =' in line:
                    headers.append(i + 1)

                #This follows both run and minimize simulations
                elif 'Loop time of' in line:
                    footers.append(i - 1)

                i += 1

            #Add last line to footers for incomplete logs
            footers.append(i)

            #Reset file pointer
            log_info.seek(0)

            #for all lines in file/output
            for header, footer in zip(headers, footers):

                #Initialize simulation data dictionary
                sim = {}

                #Read thermo data and reset file pointer
                sim['thermo'] = pd.read_csv(log_info,
                                            header=header,
                                            nrows=footer - header,
                                            sep='\s+',
                                            engine='python',
                                            skip_blank_lines=True)
                log_info.seek(0)

                #Append simulation results
                self.__simulations.append(sim)
예제 #5
0
파일: poscar.py 프로젝트: yfyh2013/atomman
def load(poscar):
    """
    Reads a poscar-style coordination file for a system.
    Returns an atomman.System, and a list of elements if the file gives them. 
    """
    #Read in all lines of the file
    with uber_open_rmode(poscar) as f:
        lines = f.read().split('\n')

    #Interpret box information
    box_scale = float(lines[1])
    avect = np.array(lines[2].split(), dtype='float64') * box_scale
    bvect = np.array(lines[3].split(), dtype='float64') * box_scale
    cvect = np.array(lines[4].split(), dtype='float64') * box_scale
    box = am.Box(avect=avect, bvect=bvect, cvect=cvect)

    #Read in elements, number of types, and style info
    try:
        typenums = np.array(lines[5].split(), dtype='int32')
        elements = [None for n in xrange(len(typenums))]
        style = lines[6]
        start_i = 7
    except:
        elements = lines[5].split()
        typenums = np.array(lines[6].split(), dtype='int32')
        style = lines[7]
        start_i = 8

    #Build atype list
    atype = np.array([], dtype='int32')
    for i in xrange(len(typenums)):
        atype = np.hstack((atype, np.full(typenums[i], i + 1, dtype='int32')))

    #Check which coordinate style to use
    if style[0] in 'cCkK':
        scale = False
    else:
        scale = True

    #Read in positions
    natoms = np.sum(typenums)
    pos = np.empty((natoms, 3), dtype='float64')
    count = 0
    for i in xrange(start_i, len(lines)):
        terms = lines[i].split()
        if len(terms) > 0:
            pos[count, :] = np.array(terms, dtype='float64')
        count += 1

    atoms = am.Atoms(natoms=natoms, prop={'atype': atype, 'pos': pos})
    system = am.System(atoms=atoms, box=box, scale=scale)

    return system, elements
예제 #6
0
def load(poscar):
    """
    Reads a poscar-style coordination file for a system.
    Returns an atomman.System, and a list of elements if the file gives them. 
    """
    #Read in all lines of the file
    with uber_open_rmode(poscar) as f:
        lines = f.read().split('\n')
    
    #Interpret box information
    box_scale = float(lines[1])
    avect = np.array(lines[2].split(), dtype='float64') * box_scale
    bvect = np.array(lines[3].split(), dtype='float64') * box_scale
    cvect = np.array(lines[4].split(), dtype='float64') * box_scale
    box = am.Box(avect=avect, bvect=bvect, cvect=cvect)
    
    #Read in elements, number of types, and style info
    try:
        typenums = np.array(lines[5].split(), dtype='int32')
        elements = [None for n in xrange(len(typenums))]
        style = lines[6]
        start_i = 7
    except:
        elements = lines[5].split()
        typenums = np.array(lines[6].split(), dtype='int32')
        style = lines[7]
        start_i = 8

    #Build atype list
    atype = np.array([], dtype='int32')
    for i in xrange(len(typenums)):
        atype = np.hstack((atype, np.full(typenums[i], i+1, dtype='int32')))        
    
    #Check which coordinate style to use
    if style[0] in 'cCkK':
        scale = False
    else:
        scale = True
    
    #Read in positions
    natoms = np.sum(typenums)
    pos = np.empty((natoms, 3), dtype='float64')
    count = 0
    for i in xrange(start_i, len(lines)):
        terms = lines[i].split()
        if len(terms) > 0:
            pos[count,:] = np.array(terms, dtype='float64')
        count += 1 
    
    atoms = am.Atoms(natoms=natoms, prop={'atype':atype, 'pos':pos})
    system = am.System(atoms=atoms, box=box, scale=scale)
    
    return system, elements
예제 #7
0
    def load(self, model, pot_dir=None):
        """
        loads potential-LAMMPS data model info.
        
        Arguments:
        model -- a string or file-like obect of a json/xml data model containing a potential-LAMMPS branch.
        pot_dir -- (optional) the directory location of any artifacts associated with the potential.
        """

        # Load model and find potential-LAMMPS
        if isinstance(model, DM):
             self.__dm = model.find('potential-LAMMPS')
        else:
            with uber_open_rmode(model) as f:
                self.__dm = DM(f).find('potential-LAMMPS')
        
        for atom in self.__dm.iteraslist('atom'):
            #Check if element is listed
            try:
                test = atom['element']
            #If no element is listed, symbol and mass must be
            except:
                try:
                    test = atom['symbol']
                    test = atom['mass']
                    atom['element'] = atom['symbol']
                except:
                    raise KeyError("Error reading Potential's atomic info: mass and symbol are needed if element is not given!")
            
            #Check if symbol is listed.  If not, make symbol = element
            try:
                test = atom['symbol']
            except:
                atom['symbol'] = atom['element']
            
            #Check if mass is listed.  If not, set to standard value of element
            try:
                mass_check = atom['mass']
            except:
                atom['mass'] = atomic_mass(atom['element'])

            assert isinstance(atom['mass'], float), 'Mass needs to be a number!'
        
        if pot_dir is not None:
            self.pot_dir = pot_dir
        else:
            self.pot_dir = ''
예제 #8
0
def load(data, pbc=(True, True, True), atom_style='atomic', units='metal'):
    """
    Read a LAMMPS-style atom data file and return a System.
    
    Argument:
    data = file name, file-like object or string to read data from.
    
    Keyword Arguments:
    pbc -- list or tuple of three boolean values indicating which System directions are periodic. Default is (True, True, True).
    atom_style -- LAMMPS atom_style option associated with the data file.  Default is 'atomic'.
    units -- LAMMPS units option associated with the data file. Default is 'metal'.
    
    When the file is read in, the units of all property values are automatically converted to atomman's set working units.
    """
    
    units_dict = style.unit(units)

    readtime = False
    count = 0
    xy = 0.0
    xz = 0.0
    yz = 0.0
    system = None
    with uber_open_rmode(data) as fp:
        #loop over all lines in fp
        for line in fp:
            terms = line.split()
            if len(terms)>0:
                
                #read atomic information if time to do so
                if readtime == True:
                    a_id = int(terms[0]) - 1
                    prop_vals[a_id] = terms[1:]
                    count += 1
                    
                    #save values to system once all atoms read in
                    if count == natoms:
                        readtime = False
                        count = 0
                        start = 0
                        
                        #iterate over all atom_style properties
                        for name, v in props.iteritems():
                            if name != 'a_id':
                                size, dim, dtype = v
                                value = np.asarray(prop_vals[:, start:start+size], dtype=dtype)
                                start += size
                                
                                #set units according to LAMMPS units style
                                unit = units_dict.get(dim, None)
                                system.atoms_prop(key=name, value=uc.set_in_units(value, unit))
                
                #read number of atoms 
                elif len(terms) == 2 and terms[1] == 'atoms':
                    natoms = int(terms[0])
                
                #read number of atom types
                elif len(terms) == 3 and terms[1] == 'atom' and terms[2] == 'types': 
                    natypes = int(terms[0])
                
                #read boundary info
                elif len(terms) == 4 and terms[2] == 'xlo' and terms[3] == 'xhi':
                    xlo = uc.set_in_units(float(terms[0]), units_dict['length'])
                    xhi = uc.set_in_units(float(terms[1]), units_dict['length'])
                elif len(terms) == 4 and terms[2] == 'ylo' and terms[3] == 'yhi':
                    ylo = uc.set_in_units(float(terms[0]), units_dict['length'])
                    yhi = uc.set_in_units(float(terms[1]), units_dict['length'])
                elif len(terms) == 4 and terms[2] == 'zlo' and terms[3] == 'zhi':
                    zlo = uc.set_in_units(float(terms[0]), units_dict['length'])
                    zhi = uc.set_in_units(float(terms[1]), units_dict['length'])
                elif len(terms) == 6 and terms[3] == 'xy' and terms[4] == 'xz' and terms[5] == 'yz':
                    xy = uc.set_in_units(float(terms[0]), units_dict['length'])
                    xz = uc.set_in_units(float(terms[1]), units_dict['length'])  
                    yz = uc.set_in_units(float(terms[2]), units_dict['length'])
                
                #Flag when reached data and setup for reading
                elif len(terms) == 1 and terms[0] in ('Atoms', 'Velocities'):
                    #create system if not already
                    if system is None:
                        box = am.Box(xlo=xlo, xhi=xhi, 
                                    ylo=ylo, yhi=yhi, 
                                    zlo=zlo, zhi=zhi, 
                                    xy=xy, xz=xz, yz=yz)
                                  
                        system = am.System(box=box, atoms=am.Atoms(natoms=natoms), pbc = pbc)    
                    
                    if terms[0] == 'Atoms':
                        props = style.atom(atom_style)
                    else:
                        props = style.velocity(atom_style)
                    
                    nvals = 0
                    for name, v in props.iteritems():
                        nvals += v[0]
                    prop_vals = np.empty((natoms, nvals-1), dtype=float)
                    readtime = True
                     
    assert system.natypes == natypes, 'Number of atom types does not match!'
    return system
예제 #9
0
파일: Log.py 프로젝트: yfyh2013/atomman
    def read(self, log_info, append=True):
        """Parses a LAMMPS screen output/log file for thermodynamic data."""
        
        #Rset properties and values if append is False
        if append is False:
            self.__simulations = []
            self.__lammps_version = None
            self.__lammps_date = None
        
        #Strings found before run and mimize simulations
        sim_trigger = ['Memory usage per processor =','Per MPI rank memory allocation (min/avg/max) =']
        
        #Handle file names, strings and open file-like objects equivalently
        with uber_open_rmode(log_info) as log_info:
        
            headers = []
            footers = []
            i = 0
            
            #for all lines in file/output
            for line in log_info:
                
                #skip blank lines
                if len(line.split()) == 0:
                    continue
                    
                #Save the LAMMPS version information
                if line[:8] == 'LAMMPS (' and self.lammps_version is None:
                    month = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 
                             'May': 5, 'Jun': 6, 'Jul': 7, 'Aug': 8,
                             'Sep': 9, 'Oct': 10,'Nov': 11,'Dec': 12}
                    self.__lammps_version = line.strip()[8:-1]
                    d = self.lammps_version.split('-')[0].split()
                    self.__lammps_date = datetime.date(int(d[2]), month[d[1]], int(d[0])) 
                   
                #Check for strings listed before run and minimize simulations
                if any([trigger in line for trigger in sim_trigger]):
                    headers.append(i+1)
                
                #This follows both run and minimize simulations
                elif 'Loop time of' in line:
                    footers.append(i-1)
                
                i += 1
            
            #Add last line to footers for incomplete logs
            footers.append(i)
            
            #Reset file pointer
            log_info.seek(0)
            
            #for all lines in file/output
            for header, footer in zip(headers, footers):
                
                #Initialize simulation data dictionary
                sim = {}
                    
                #Read thermo data and reset file pointer
                sim['thermo'] = pd.read_csv(log_info, header=header, nrows=footer-header, sep='\s+', engine='python', skip_blank_lines=True)
                log_info.seek(0)

                #Append simulation results
                self.__simulations.append(sim)        
예제 #10
0
 def test_stringread(self):
     with uber_open_rmode(self.content) as f:
         content = f.read()
     assert content.decode('UTF-8') == self.content
예제 #11
0
파일: parse.py 프로젝트: lmhale99/iprPy
def parse(inscript: Union[str, io.IOBase],
          singularkeys: Optional[List[str]] = None,
          allsingular: bool = False) -> dict:
    """
    Parses an input file and returns a dictionary of parameter terms.
    
    These are the parsing rules:
    
    - The first word in a line is taken as the key name of the parameter.
    - All other words are joined together into a single string value for the
      parameter.
    - Words that start with # indicate comments with that word and all words
      to the right of it in the same line being ignored.
    - Any lines with less than two non-comment terms are ignored. In other 
      words, blank lines and lines with keys but not values are skipped over.
    - Multiple values can be assigned to the same term by repeating the key 
      name on a different line. 
    - The keyword arguments can be used to issue an error if multiple values
      are trying to be assigned to terms that should only have a single 
      values.
    
    Parameters
    ----------
    inscript : string or file-like-object
        The file, path to file, or contents of the input script to parse.
    singularkeys : list of str, optional
        List of term keys that should not have multiple values.
    allsingular : bool, optional
        Indicates if all term keys should be singular (Default is False).
    
    Returns
    -------
    params : dict
        Dictionary of parsed input key-value pairs
        
    Raises
    ------
    ValueError
        If both singularkeys and allsingular are given, or if multiple values
        found for a singular key.
    """

    # Argument check
    if singularkeys is None:
        singularkeys = []
    singularkeys = aslist(singularkeys)
    if allsingular and len(singularkeys) > 0:
        raise ValueError(
            'allsingular and singularkeys options cannot both be given')

    params = {}

    # Open inscript
    with uber_open_rmode(inscript) as infile:

        # Iterate over all lines in infile
        for line in infile:
            try:
                line = line.decode('utf-8')
            except:
                pass
            terms = line.split()

            # Remove comments
            i = 0
            index = len(line)
            while i < len(terms):
                if len(terms[i]) > 0 and terms[i][0] == '#':
                    index = line.index(terms[i])
                    break
                i += 1
            terms = terms[:i]
            line = line[:index]

            # Skip empty, comment, and valueless lines
            if len(terms) > 1:

                # Split into key and value
                key = terms[0]
                value = line.replace(key, '', 1).strip()

                # First time key is called save as is
                if key not in params:
                    params[key] = value

                # Append value to key if not singular
                elif not allsingular and key not in singularkeys:

                    # Append value if parameter is already a list
                    if isinstance(params[key], list):
                        params[key].append(value)

                    # Convert parameter to list if needed and then append value
                    else:
                        params[key] = [params[key]]
                        params[key].append(value)

                # Issue error for trying to append to a singular value
                else:
                    raise ValueError(
                        'multiple values found for singular input parameter ' +
                        key)

    return params
예제 #12
0
def load(data, prop_info=None):
    """
    Read a LAMMPS-style dump file and return a System.
    
    Argument:
    data = file name, file-like object or string to read data from.
    
    Keyword Argument:
    prop_info -- DataModelDict for relating the per-atom properties to/from the dump file and the System. Will create a default json instance <data>.json if prop_info is not given and <data>.json doesn't already exist.
    """
    
    #read in prop_info if supplied
    if prop_info is not None:
        if isinstance(prop_info, (str, unicode)) and os.path.isfile(prop_info):
            with open(prop_info) as f:
                prop_info = f.read()
        prop_info = DataModelDict(prop_info)
    
    #check for default prop_info file
    else:
        try:
            with open(data+'.json') as fj:
                prop_info = DataModelDict(fj)
        except:
            prop_info = None
            box_unit = None
   
    #read box_unit if specified in prop_info
    if prop_info is not None:
        prop_info = prop_info.find('LAMMPS-dump-atoms_prop-relate')
        box_unit = prop_info['box_prop'].get('unit', None)

    with uber_open_rmode(data) as f:
        pbc = None
        box = None
        natoms = None
        system = None
        
        readnatoms = False
        readatoms = False
        readtimestep = False
        acount = 0
        bcount = 3
        
        #loop over all lines in file
        for line in f:
            terms = line.split()
            if len(terms) > 0:
    
                #read atomic values if time to do so
                if readatoms:
                    #sort values by a_id and save to prop_vals
                    a_id = long(terms[id_index]) - 1
                    prop_vals[a_id] = terms
                    acount += 1
                    
                    #save values to sys once all atoms read in
                    if acount == natoms:
                        readatoms = False
                        
                        #cycle over the defined atoms_prop in prop_info
                        for prop, p_keys in prop_info['atoms_prop'].iteritems():
                            #set default keys
                            dtype = p_keys.get('dtype', None)
                            shape = p_keys.get('shape', None)
                            shape = (natoms,) + np.empty(shape).shape
                            
                            value = np.empty(shape)
                            
                            #cycle over the defined LAMMPS-attributes in prop_info
                            for attr, a_keys in prop_info['LAMMPS-attribute'].iteritems():
                                
                                #cycle over list of relations for each LAMMPS-attribute
                                for relation in a_keys.iteraslist('relation'):
                                    
                                    #if atoms prop and relation prop match
                                    if relation['prop'] == prop:
                                        #get unit and scale info
                                        unit = relation.get('unit', None)

                                        if unit == 'scaled':
                                            unit = None
                                            scale = True
                                        else:
                                            scale = False
                                        
                                        #find index of attribute in name_list
                                        a_index = name_list.index(attr) 
                                        #check if relation has index listed
                                        try:
                                            index = relation['index']
                                            if isinstance(index, list):
                                                index = (Ellipsis,) + tuple(index)
                                            else:
                                                index = (Ellipsis,) + (index,)
                                                
                                            value[index] = prop_vals[:, a_index]
                                        #scalar if no index
                                        except:
                                            value[:] = prop_vals[:, a_index]
                            #test if values are ints if dtype not specified
                            if dtype is None and np.allclose(np.asarray(value, dtype=int), value):
                                value = np.asarray(value, dtype=int)
                            else:
                                value = np.asarray(value, dtype=dtype)
                            
                            #save prop values to system
                            system.atoms_prop(key=prop, value=uc.set_in_units(value, unit), scale=scale)
                
                #read number of atoms if time to do so
                elif readnatoms:                
                    natoms = int(terms[0])
                    readnatoms = False
                
                elif readtimestep:
                    timestep = int(terms[0])
                    readtimestep = False
                
                #read x boundary condition values if time to do so
                elif bcount == 0:
                    xlo = uc.set_in_units(float(terms[0]), box_unit)
                    xhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        xy = uc.set_in_units(float(terms[2]), box_unit)
                    bcount += 1
                    
                #read y boundary condition values if time to do so
                elif bcount == 1:
                    ylo = uc.set_in_units(float(terms[0]), box_unit)
                    yhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        xz = uc.set_in_units(float(terms[2]), box_unit)
                    bcount += 1
                    
                #read z boundary condition values if time to do so
                elif bcount == 2:
                    zlo = uc.set_in_units(float(terms[0]), box_unit)
                    zhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        yz = uc.set_in_units(float(terms[2]), box_unit)
                        xlo = xlo - min((0.0, xy, xz, xy + xz))
                        xhi = xhi - max((0.0, xy, xz, xy + xz))
                        ylo = ylo - min((0.0, yz))
                        yhi = yhi - max((0.0, yz))
                        box = am.Box(xlo=xlo, xhi=xhi, ylo=ylo, yhi=yhi, zlo=zlo, zhi=zhi, xy=xy, xz=xz, yz=yz)
                    else:
                        box = am.Box(xlo=xlo, xhi=xhi, ylo=ylo, yhi=yhi, zlo=zlo, zhi=zhi) 
                    bcount += 1
                
                #if not time to read value, check the ITEM: header information
                else:
                    
                    #only consider ITEM: lines
                    if terms[0] == 'ITEM:':
                    
                        #ITEM: TIMESTEP indicates it is time to read the timestep
                        if terms[1] == 'TIMESTEP':
                            readtimestep = True                        
                        
                        #ITEM: NUMBER indicates it is time to read natoms
                        elif terms[1] == 'NUMBER':
                            readnatoms = True
                            
                        #ITEM: BOX gives pbc and indicates it is time to read box parameters
                        elif terms[1] == 'BOX':
                            pbc = [True, True, True]
                            for i in xrange(3):
                                if terms[i + len(terms) - 3] != 'pp':
                                    pbc[i] = False
                            bcount = 0
                            
                        #ITEM: ATOMS gives list of per-Atom property names and indicates it is time to read atomic values      
                        elif terms[1] == 'ATOMS':
                            assert box is not None,  'Box information not found'
                            assert natoms is not None,  'Number of atoms not found'
                            
                            #read list of property names
                            name_list = terms[2:]
                            id_index = name_list.index('id')
                            
                            #create empty array for reading property values
                            prop_vals = np.empty((natoms, len(name_list)))
                            
                            #create and save default prop_info Data Model if needed
                            if prop_info is None:                                                         
                                prop_info = __prop_info_default_load(name_list)
                                if isinstance(data, (str, unicode)) and len(data) < 80:
                                    with open(data+'.json', 'w') as fj:
                                        prop_info.json(fp=fj, indent=4)
                                prop_info = prop_info.find('LAMMPS-dump-atoms_prop-relate')
                            
                            #create system and flag that it is time to read data
                            system = am.System(atoms=am.Atoms(natoms=natoms), box=box, pbc=pbc)
                            system.prop['timestep'] = timestep
                            readatoms = True 
    if system is None:
        raise ValueError('Failed to properly load dump file '+str(data)[:50])
    
    return system      
예제 #13
0
 def test_stringread(self):
     with uber_open_rmode(self.content) as f:
         content = f.read()
     assert content.decode('UTF-8') == self.content
예제 #14
0
def load(data, prop_info=None):
    """
    Read a LAMMPS-style dump file and return a System.
    
    Argument:
    data = file name, file-like object or string to read data from.
    
    Keyword Argument:
    prop_info -- DataModelDict for relating the per-atom properties to/from the dump file and the System. Will create a default json instance <data>.json if prop_info is not given and <data>.json doesn't already exist.
    """

    #read in prop_info if supplied
    if prop_info is not None:
        if isinstance(prop_info, (str, unicode)) and os.path.isfile(prop_info):
            with open(prop_info) as f:
                prop_info = f.read()
        prop_info = DataModelDict(prop_info)

    #check for default prop_info file
    else:
        try:
            with open(data + '.json') as fj:
                prop_info = DataModelDict(fj)
        except:
            prop_info = None
            box_unit = None

    #read box_unit if specified in prop_info
    if prop_info is not None:
        prop_info = prop_info.find('LAMMPS-dump-atoms_prop-relate')
        box_unit = prop_info['box_prop'].get('unit', None)

    with uber_open_rmode(data) as f:
        pbc = None
        box = None
        natoms = None
        system = None

        readnatoms = False
        readatoms = False
        readtimestep = False
        acount = 0
        bcount = 3

        #loop over all lines in file
        for line in f:
            terms = line.split()
            if len(terms) > 0:

                #read atomic values if time to do so
                if readatoms:
                    #sort values by a_id and save to prop_vals
                    a_id = long(terms[id_index]) - 1
                    prop_vals[a_id] = terms
                    acount += 1

                    #save values to sys once all atoms read in
                    if acount == natoms:
                        readatoms = False

                        #cycle over the defined atoms_prop in prop_info
                        for prop, p_keys in prop_info['atoms_prop'].iteritems(
                        ):
                            #set default keys
                            dtype = p_keys.get('dtype', None)
                            shape = p_keys.get('shape', None)
                            shape = (natoms, ) + np.empty(shape).shape

                            value = np.empty(shape)

                            #cycle over the defined LAMMPS-attributes in prop_info
                            for attr, a_keys in prop_info[
                                    'LAMMPS-attribute'].iteritems():

                                #cycle over list of relations for each LAMMPS-attribute
                                for relation in a_keys.iteraslist('relation'):

                                    #if atoms prop and relation prop match
                                    if relation['prop'] == prop:
                                        #get unit and scale info
                                        unit = relation.get('unit', None)

                                        if unit == 'scaled':
                                            unit = None
                                            scale = True
                                        else:
                                            scale = False

                                        #find index of attribute in name_list
                                        a_index = name_list.index(attr)
                                        #check if relation has index listed
                                        try:
                                            index = relation['index']
                                            if isinstance(index, list):
                                                index = (
                                                    Ellipsis, ) + tuple(index)
                                            else:
                                                index = (Ellipsis, ) + (
                                                    index, )

                                            value[index] = prop_vals[:,
                                                                     a_index]
                                        #scalar if no index
                                        except:
                                            value[:] = prop_vals[:, a_index]
                            #test if values are ints if dtype not specified
                            if dtype is None and np.allclose(
                                    np.asarray(value, dtype=int), value):
                                value = np.asarray(value, dtype=int)
                            else:
                                value = np.asarray(value, dtype=dtype)

                            #save prop values to system
                            system.atoms_prop(key=prop,
                                              value=uc.set_in_units(
                                                  value, unit),
                                              scale=scale)

                #read number of atoms if time to do so
                elif readnatoms:
                    natoms = int(terms[0])
                    readnatoms = False

                elif readtimestep:
                    timestep = int(terms[0])
                    readtimestep = False

                #read x boundary condition values if time to do so
                elif bcount == 0:
                    xlo = uc.set_in_units(float(terms[0]), box_unit)
                    xhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        xy = uc.set_in_units(float(terms[2]), box_unit)
                    bcount += 1

                #read y boundary condition values if time to do so
                elif bcount == 1:
                    ylo = uc.set_in_units(float(terms[0]), box_unit)
                    yhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        xz = uc.set_in_units(float(terms[2]), box_unit)
                    bcount += 1

                #read z boundary condition values if time to do so
                elif bcount == 2:
                    zlo = uc.set_in_units(float(terms[0]), box_unit)
                    zhi = uc.set_in_units(float(terms[1]), box_unit)
                    if len(terms) == 3:
                        yz = uc.set_in_units(float(terms[2]), box_unit)
                        xlo = xlo - min((0.0, xy, xz, xy + xz))
                        xhi = xhi - max((0.0, xy, xz, xy + xz))
                        ylo = ylo - min((0.0, yz))
                        yhi = yhi - max((0.0, yz))
                        box = am.Box(xlo=xlo,
                                     xhi=xhi,
                                     ylo=ylo,
                                     yhi=yhi,
                                     zlo=zlo,
                                     zhi=zhi,
                                     xy=xy,
                                     xz=xz,
                                     yz=yz)
                    else:
                        box = am.Box(xlo=xlo,
                                     xhi=xhi,
                                     ylo=ylo,
                                     yhi=yhi,
                                     zlo=zlo,
                                     zhi=zhi)
                    bcount += 1

                #if not time to read value, check the ITEM: header information
                else:

                    #only consider ITEM: lines
                    if terms[0] == 'ITEM:':

                        #ITEM: TIMESTEP indicates it is time to read the timestep
                        if terms[1] == 'TIMESTEP':
                            readtimestep = True

                        #ITEM: NUMBER indicates it is time to read natoms
                        elif terms[1] == 'NUMBER':
                            readnatoms = True

                        #ITEM: BOX gives pbc and indicates it is time to read box parameters
                        elif terms[1] == 'BOX':
                            pbc = [True, True, True]
                            for i in xrange(3):
                                if terms[i + len(terms) - 3] != 'pp':
                                    pbc[i] = False
                            bcount = 0

                        #ITEM: ATOMS gives list of per-Atom property names and indicates it is time to read atomic values
                        elif terms[1] == 'ATOMS':
                            assert box is not None, 'Box information not found'
                            assert natoms is not None, 'Number of atoms not found'

                            #read list of property names
                            name_list = terms[2:]
                            id_index = name_list.index('id')

                            #create empty array for reading property values
                            prop_vals = np.empty((natoms, len(name_list)))

                            #create and save default prop_info Data Model if needed
                            if prop_info is None:
                                prop_info = __prop_info_default_load(name_list)
                                if isinstance(
                                        data,
                                    (str, unicode)) and len(data) < 80:
                                    with open(data + '.json', 'w') as fj:
                                        prop_info.json(fp=fj, indent=4)
                                prop_info = prop_info.find(
                                    'LAMMPS-dump-atoms_prop-relate')

                            #create system and flag that it is time to read data
                            system = am.System(atoms=am.Atoms(natoms=natoms),
                                               box=box,
                                               pbc=pbc)
                            system.prop['timestep'] = timestep
                            readatoms = True
    if system is None:
        raise ValueError('Failed to properly load dump file ' + str(data)[:50])

    return system
예제 #15
0
파일: parse.py 프로젝트: usnistgov/iprPy
def parse(inscript, singularkeys=[], allsingular=False):
    """
    Parses an input file and returns a dictionary of parameter terms.
    
    These are the parsing rules:
    
    - The first word in a line is taken as the key name of the parameter.
    - All other words are joined together into a single string value for the
      parameter.
    - Words that start with # indicate comments with that word and all words
      to the right of it in the same line being ignored.
    - Any lines with less than two non-comment terms are ignored. In other 
      words, blank lines and lines with keys but not values are skipped over.
    - Multiple values can be assigned to the same term by repeating the key 
      name on a different line. 
    - The keyword arguments can be used to issue an error if multiple values
      are trying to be assigned to terms that should only have a single 
      values.
    
    Parameters
    ----------
    inscript : string or file-like-object
        The file, path to file, or contents of the input script to parse.
    singularkeys : list of str, optional
        List of term keys that should not have multiple values.
    allsingular : bool, optional
        Indicates if all term keys should be singular (Default is False).
    
    Returns
    -------
    params : dict
        Dictionary of parsed input key-value pairs
        
    Raises
    ------
    ValueError
        If both singularkeys and allsingular are given, or if multiple values
        found for a singular key.
    """
    
    # Argument check
    singularkeys = aslist(singularkeys)
    if allsingular and len(singularkeys) > 0:
        raise ValueError('allsingular and singularkeys options cannot both be given')
    
    params = {}
    
    # Open inscript
    with uber_open_rmode(inscript) as infile:
        
        # Iterate over all lines in infile
        for line in infile:
            try:
                line = line.decode('utf-8')
            except:
                pass
            terms = line.split()
            
            # Remove comments
            i = 0
            index = len(line)
            while i < len(terms):
                if len(terms[i]) > 0 and terms[i][0] == '#':
                    index = line.index(terms[i])
                    break
                i += 1
            terms = terms[:i]
            line = line[:index]

            # Skip empty, comment, and valueless lines
            if len(terms) > 1:
                
                # Split into key and value
                key = terms[0]
                value = line.replace(key, '', 1).strip()
            
                # First time key is called save as is
                if key not in params:
                    params[key] = value
                
                # Append value to key if not singular
                elif not allsingular and key not in singularkeys:
                    
                    # Append value if parameter is already a list
                    if isinstance(params[key], list):
                        params[key].append(value)
                    
                    # Convert parameter to list if needed and then append value
                    else:
                        params[key] = [params[key]]
                        params[key].append(value)
                
                # Issue error for trying to append to a singular value
                else:
                    raise ValueError('multiple values found for singular input parameter ' + key)
    
    return params