boxes, gt_classes = load_pascal_annotation(anotation_path, classes) gt_boxes = np.empty((len(boxes), 5), dtype=np.float32) gt_boxes[:, 0:4] = boxes * im_scale gt_boxes[:, 4] = gt_classes gt_boxes = torch.from_numpy(gt_boxes).unsqueeze(0).cuda().float() im_data = torch.from_numpy(im.transpose( 2, 0, 1)).unsqueeze(0).cuda().float() im_info = torch.from_numpy( np.array([[im.shape[0], im.shape[1], im_scale]]).astype(np.float64)).cuda() num_boxes = torch.tensor([gt_boxes.shape[1]]).float().cuda() im_adv = model_adv.adv_sample_infer(im_data, im_info, gt_boxes, num_boxes, step_size=0.03, num_steps=1) rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label, conv_output = model(im_adv, im_info, gt_boxes, num_boxes, grad_cam=True) one_hot_output = torch.zeros_like(cls_prob) one_hot_output[0][:, 0:-1] = 1 model.zero_grad() cls_prob.backward(gradient=one_hot_output, retain_graph=True) guided_gradients = model.gradients.cpu().data.numpy()[0] target = conv_output.cpu().data.numpy()[0]
def test_adv( cfg, data, weights=None, batch_size=4, step_size=0.01, num_steps=3, test_type='test', iou_thres=0.5, nms_thres=0.5, conf_thres=0.001, img_size=416, ): data = parse_data_cfg(data) nc = int(data['classes']) # number of classes if test_type == 'valid': test_path = data['valid'] # path to test images elif test_type == 'test': test_path = data['test'] print('test_path:', test_path) # Initialize model model = Darknet(cfg, img_size).cuda().eval() if weights.endswith('.pt'): # pytorch format chkpt = torch.load(weights) chkpt['model'] = { k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel() } model.load_state_dict(chkpt['model'], strict=True) del chkpt elif weights.endswith('.weights'): # darknet format print('inherit model weights') if 'yolo' in weights: model.load_darknet_weights(weights) print(' inherit model weights from yolo pretrained weights') else: load_darknet_weights(model, weights) print(' do not inherit model weights from yolo pretrained weights') model_adv = PGD(model) dataset = LoadImagesAndLabels( test_path, img_size=img_size, batch_size=batch_size, augment=False, hyp=None, # augmentation hyperparameters rect=True, # rectangular training image_weights=False, cache_labels=False, cache_images=False) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, num_workers=min([os.cpu_count(), batch_size, 16]), shuffle=False, # Shuffle=True unless rectangular training is used pin_memory=True, collate_fn=dataset.collate_fn) # Run inference seen = 0 p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3) jdict, stats, ap, ap_class = [], [], [], [] s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1') for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): imgs = imgs.cuda() targets = targets.cuda() if num_steps * step_size > 0: input_img = model_adv.adv_sample_infer(imgs, targets, step_size=step_size, num_steps=num_steps) else: input_img = imgs _, _, height, width = imgs.shape # batch size, channels, height, width # Run model inf_out, train_out = model(input_img) # inference and training outputs if hasattr(model, 'hyp'): # if model has loss hyperparameters loss += compute_loss(train_out, targets, model)[1][:3].cpu() # GIoU, obj, cls # Run NMS output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres) # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class if pred is None: if nl: stats.append(([], torch.Tensor(), torch.Tensor(), tcls)) continue # Clip boxes to image bounds clip_coords(pred, (height, width)) # Assign all predictions as incorrect correct = [0] * len(pred) if nl: detected = [] tcls_tensor = labels[:, 0] seen += 1 # target boxes tbox = xywh2xyxy(labels[:, 1:5]) tbox[:, [0, 2]] *= width tbox[:, [1, 3]] *= height # Search for correct predictions for i, (*pbox, pconf, pcls_conf, pcls) in enumerate(pred): # Break if all targets already located in image if len(detected) == nl: break # Continue if predicted class not among image classes if pcls.item() not in tcls: continue # Best iou, index between pred and targets m = (pcls == tcls_tensor).nonzero().view(-1) iou, bi = bbox_iou(pbox, tbox[m]).max(0) # If iou > threshold and class is correct mark as correct if iou > iou_thres and m[ bi] not in detected: # and pcls == tcls[bi]: correct[i] = 1 detected.append(m[bi]) # Append statistics (correct, conf, pcls, tcls) stats.append((correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls)) # Compute statistics stats = [np.concatenate(x, 0) for x in list(zip(*stats))] # to numpy if len(stats): p, r, ap, f1, ap_class = ap_per_class(*stats) mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%10.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1)) return map