예제 #1
0
파일: train.py 프로젝트: zhf459/GE2E
def collate_fn(batch):
    """Create batch
    what a batch look like?
    Args:
        batch(tuple): List of tuples
            - x[0] (ndarray,int) : list of (T,) audio
            - x[1] (ndarray,int) : list of (T, D)
            - x[2] (ndarray,int) : list of (1,), speaker id
    Returns:
        tuple: Tuple of batch
            - x (FloatTensor) : Network inputs (B, C, T)
            - y (LongTensor)  : Network targets (B, T, 1)
    """
    # handle every batch
    new_batch = []
    for idx in range(len(batch)):
        x = batch[idx]
        x = audio.trim(x)  # we hope the length should be longer than 1.6s
        x = get_audio(x)
        x = get_log_mels(x)
        new_batch.append(x)
    batch = new_batch
    # (B, T, C)

    return batch
예제 #2
0
파일: dataset.py 프로젝트: yrpang/mindspore
def process_no_condition_batch(max_time_steps, batch):
    """process no condition batch"""
    new_batch = []
    for batch_ in batch:
        x, c, g = batch_
        x = audio.trim(x)
        if max_time_steps is not None and len(x) > max_time_steps:
            s = np.random.randint(0, len(x) - max_time_steps)
            x = x[s:s + max_time_steps]
        new_batch.append((x, c, g))
    return new_batch
예제 #3
0
def collate_fn(batch):
    """Create batch

    Args:
        batch(tuple): List of tuples
            - x[0] (ndarray,int) : list of (T,)
            - x[1] (ndarray,int) : list of (T, D)
            - x[2] (ndarray,int) : list of (1,), speaker id
    Returns:
        tuple: Tuple of batch
            - x (FloatTensor) : Network inputs (B, C, T)
            - y (LongTensor)  : Network targets (B, T, 1)
    """

    local_conditioning = len(batch[0]) >= 2 and hparams.cin_channels > 0
    global_conditioning = len(batch[0]) >= 3 and hparams.gin_channels > 0

    # To save GPU memory... I don't want to do this though
    if hparams.max_time_sec is not None:
        max_time_steps = int(hparams.max_time_sec * hparams.sample_rate)
    elif hparams.max_time_steps is not None:
        max_time_steps = hparams.max_time_steps
    else:
        max_time_steps = None

    # Time resolution adjastment
    if local_conditioning:
        new_batch = []
        for idx in range(len(batch)):
            x, c, g = batch[idx]
            if hparams.upsample_conditional_features:
                assert_ready_for_upsampling(x, c)
                if max_time_steps is not None:
                    max_steps = ensure_divisible(max_time_steps,
                                                 audio.get_hop_size(), True)
                    if len(x) > max_steps:
                        max_time_frames = max_steps // audio.get_hop_size()
                        s = np.random.randint(0, len(c) - max_time_frames)
                        ts = s * audio.get_hop_size()
                        x = x[ts:ts + audio.get_hop_size() * max_time_frames]
                        c = c[s:s + max_time_frames, :]
                        assert_ready_for_upsampling(x, c)
            else:
                x, c = audio.adjast_time_resolution(x, c)
                if max_time_steps is not None and len(x) > max_time_steps:
                    s = np.random.randint(0, len(x) - max_time_steps)
                    x, c = x[s:s + max_time_steps], c[s:s + max_time_steps, :]
                assert len(x) == len(c)
            new_batch.append((x, c, g))
        batch = new_batch
    else:
        new_batch = []
        for idx in range(len(batch)):
            x, c, g = batch[idx]
            x = audio.trim(x)
            if max_time_steps is not None and len(x) > max_time_steps:
                s = np.random.randint(0, len(x) - max_time_steps)
                if local_conditioning:
                    x, c = x[s:s + max_time_steps], c[s:s + max_time_steps, :]
                else:
                    x = x[s:s + max_time_steps]
            new_batch.append((x, c, g))
        batch = new_batch

    # Lengths
    input_lengths = [len(x[0]) for x in batch]
    max_input_len = max(input_lengths)

    # (B, T, C)
    # pad for time-axis
    if is_mulaw_quantize(hparams.input_type):
        x_batch = np.array([
            _pad_2d(
                np_utils.to_categorical(x[0],
                                        num_classes=hparams.quantize_channels),
                max_input_len) for x in batch
        ],
                           dtype=np.float32)
    else:
        x_batch = np.array(
            [_pad_2d(x[0].reshape(-1, 1), max_input_len) for x in batch],
            dtype=np.float32)
    assert len(x_batch.shape) == 3

    # (B, T)
    if is_mulaw_quantize(hparams.input_type):
        y_batch = np.array([_pad(x[0], max_input_len) for x in batch],
                           dtype=np.int)
    else:
        y_batch = np.array([_pad(x[0], max_input_len) for x in batch],
                           dtype=np.float32)
    assert len(y_batch.shape) == 2

    # (B, T, D)
    if local_conditioning:
        max_len = max([len(x[1]) for x in batch])
        c_batch = np.array([_pad_2d(x[1], max_len) for x in batch],
                           dtype=np.float32)
        assert len(c_batch.shape) == 3
        # (B x C x T)
        c_batch = torch.FloatTensor(c_batch).transpose(1, 2).contiguous()
    else:
        c_batch = None

    if global_conditioning:
        g_batch = torch.LongTensor([x[2] for x in batch])
    else:
        g_batch = None

    # Covnert to channel first i.e., (B, C, T)
    x_batch = torch.FloatTensor(x_batch).transpose(1, 2).contiguous()
    # Add extra axis
    if is_mulaw_quantize(hparams.input_type):
        y_batch = torch.LongTensor(y_batch).unsqueeze(-1).contiguous()
    else:
        y_batch = torch.FloatTensor(y_batch).unsqueeze(-1).contiguous()

    input_lengths = torch.LongTensor(input_lengths)

    return x_batch, y_batch, c_batch, g_batch, input_lengths
예제 #4
0
def collate_fn(batch):
    """Create batch

    Args:
        batch(tuple): List of tuples
            - x[0] (ndarray,int) : list of (T,)
            - x[1] (ndarray,int) : list of (T, D)
            - x[2] (ndarray,int) : list of (1,), speaker id
    Returns:
        tuple: Tuple of batch
            - x (FloatTensor) : Network inputs (B, C, T)
            - y (LongTensor)  : Network targets (B, T, 1)
    """

    local_conditioning = len(batch[0]) >= 2 and hparams.cin_channels > 0
    global_conditioning = len(batch[0]) >= 3 and hparams.gin_channels > 0

    if hparams.max_time_sec is not None:
        max_time_steps = int(hparams.max_time_sec * hparams.sample_rate)
    elif hparams.max_time_steps is not None:
        max_time_steps = hparams.max_time_steps
    else:
        max_time_steps = None

    # Time resolution adjustment
    if local_conditioning:
        new_batch = []
        for idx in range(len(batch)):
            x, c, g = batch[idx]
            # x, c = audio.adjust_time_resolution(x, c)
            if max_time_steps is not None and len(x) > max_time_steps:
                s = np.random.randint(0, len(x) - max_time_steps)
                x, c = x[s:s + max_time_steps], c[s:s + max_time_steps, :]
            assert len(x) == len(c)
            new_batch.append((x, c, g))
        batch = new_batch
    else:
        new_batch = []
        for idx in range(len(batch)):
            x, c, g = batch[idx]
            x = audio.trim(x)
            if max_time_steps is not None and len(x) > max_time_steps:
                s = np.random.randint(0, len(x) - max_time_steps)
                if local_conditioning:
                    x, c = x[s:s + max_time_steps], c[s:s + max_time_steps, :]
                else:
                    x = x[s:s + max_time_steps]
            new_batch.append((x, c, g))
        batch = new_batch

    # Lengths
    input_lengths = [len(x[0]) for x in batch]
    max_input_len = max(input_lengths)

    # (B, T, C)
    # pad for time-axis
    x_batch = np.array([_pad_2d(x[0], max_input_len) for x in batch],
                       dtype=np.float32)
    assert len(x_batch.shape) == 3

    # (B, T)
    y_batch = np.array([_pad_2d(x[0], max_input_len) for x in batch],
                       dtype=np.float32)
    assert len(y_batch.shape) == 3

    # (B, T, D)
    if local_conditioning:
        max_len = max([len(x[1]) for x in batch])
        c_batch = np.array([_pad_2d(x[1], max_len) for x in batch],
                           dtype=np.float32)
        assert len(c_batch.shape) == 3
        # (B x C x T)
        c_batch = torch.FloatTensor(c_batch).transpose(1, 2).contiguous()
    else:
        c_batch = None

    if global_conditioning:
        g_batch = torch.LongTensor([x[2] for x in batch])
    else:
        g_batch = None

    # Covnert to channel first i.e., (B, C, T)
    x_batch = torch.FloatTensor(x_batch).transpose(1, 2).contiguous()
    # Add extra axis
    y_batch = torch.FloatTensor(y_batch).unsqueeze(-1).contiguous()

    input_lengths = torch.LongTensor(input_lengths)

    return x_batch, y_batch, c_batch, g_batch, input_lengths