def test_pipeline_fit(self, fit_dictionary_tabular):
        """This test makes sure that the pipeline is able to fit
        given random combinations of hyperparameters across the pipeline"""

        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'])
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)
        try:
            pipeline.fit(fit_dictionary_tabular)
        except Exception as e:
            pytest.fail(f"Failed due to {e} for config={config}")

        # To make sure we fitted the model, there should be a
        # run summary object with accuracy
        run_summary = pipeline.named_steps['trainer'].run_summary
        assert run_summary is not None

        # Make sure that performance was properly captured
        assert run_summary.performance_tracker['train_loss'][1] > 0
        assert run_summary.total_parameter_count > 0
        assert 'accuracy' in run_summary.performance_tracker['train_metrics'][
            1]

        # Make sure a network was fit
        assert isinstance(pipeline.named_steps['network'].get_network(),
                          torch.nn.Module)
    def test_pipeline_fit_include(self, fit_dictionary_tabular, preprocessor):
        """
        This test ensures that a tabular classification
        pipeline can be fit with all preprocessors
        in the include
        """

        fit_dictionary_tabular['epochs'] = 1

        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'],
            include={'feature_preprocessor': [preprocessor]})
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)
        try:
            pipeline.fit(fit_dictionary_tabular)
        except Exception as e:
            pytest.fail(f"For config {config} failed with {e}")

        # To make sure we fitted the model, there should be a
        # run summary object with accuracy
        run_summary = pipeline.named_steps['trainer'].run_summary
        assert run_summary is not None

        assert preprocessor == pipeline.named_steps[
            'feature_preprocessor'].choice.__class__.__name__
    def test_pipeline_predict(self, fit_dictionary_tabular):
        """This test makes sure that the pipeline is able to predict
        given a random configuration"""
        X = fit_dictionary_tabular['X_train'].copy()
        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'])

        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        with unittest.mock.patch.object(pipeline.named_steps['trainer'].choice, 'train_epoch') \
             as patch_train:
            patch_train.return_value = 1, {}
            pipeline.fit(fit_dictionary_tabular)

        # we expect the output to have the same batch size as the test input,
        # and number of outputs per batch sample equal to the number of outputs
        expected_output_shape = (
            X.shape[0],
            fit_dictionary_tabular["dataset_properties"]["output_shape"])

        prediction = pipeline.predict(X)
        assert isinstance(prediction, np.ndarray)
        assert prediction.shape == expected_output_shape
def test_pipeline_score(fit_dictionary_tabular_dummy):
    """This test makes sure that the pipeline is able to achieve a decent score on dummy data
    given the default configuration"""
    X = fit_dictionary_tabular_dummy['X_train'].copy()
    y = fit_dictionary_tabular_dummy['y_train'].copy()

    # increase number of epochs to test for performance
    fit_dictionary_tabular_dummy['epochs'] = 50

    pipeline = TabularClassificationPipeline(
        dataset_properties=fit_dictionary_tabular_dummy['dataset_properties'])

    cs = pipeline.get_hyperparameter_search_space()
    config = cs.get_default_configuration()
    pipeline.set_hyperparameters(config)

    pipeline.fit(fit_dictionary_tabular_dummy)

    # Ensure that the network is an instance of torch Module
    assert isinstance(pipeline.named_steps['network'].get_network(),
                      torch.nn.Module)

    accuracy = pipeline.score(X, y)

    # we should be able to get a decent score on this dummy data
    assert accuracy >= 0.8, f"Pipeline:{pipeline} Config:{config} FitDict: {fit_dictionary_tabular_dummy}"
def test_train_pipeline_with_runtime(fit_dictionary_tabular_dummy):
    """This test makes sure that the pipeline is able to achieve a decent score on dummy data
    given the default configuration"""

    # Convert the training to runtime
    fit_dictionary_tabular_dummy.pop('epochs', None)
    fit_dictionary_tabular_dummy['budget_type'] = 'runtime'
    fit_dictionary_tabular_dummy['runtime'] = 5
    fit_dictionary_tabular_dummy['early_stopping'] = -1

    pipeline = TabularClassificationPipeline(
        dataset_properties=fit_dictionary_tabular_dummy['dataset_properties'])

    cs = pipeline.get_hyperparameter_search_space()
    config = cs.get_default_configuration()
    pipeline.set_hyperparameters(config)

    pipeline.fit(fit_dictionary_tabular_dummy)
    run_summary = pipeline.named_steps['trainer'].run_summary
    budget_tracker = pipeline.named_steps['trainer'].budget_tracker
    assert budget_tracker.budget_type == 'runtime'
    assert budget_tracker.max_runtime == 5
    assert budget_tracker.is_max_time_reached()

    # There is no epoch limitation
    assert not budget_tracker.is_max_epoch_reached(epoch=np.inf)

    # More than 200 epochs would have pass in 5 seconds for this dataset
    assert len(run_summary.performance_tracker['start_time']) > 100
    def test_pipeline_predict_proba(self, fit_dictionary_tabular):
        """This test makes sure that the pipeline is able to fit
        given random combinations of hyperparameters across the pipeline
        And then predict using predict probability
        """
        X = fit_dictionary_tabular['X_train'].copy()
        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'])

        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        try:
            with unittest.mock.patch.object(pipeline.named_steps['trainer'].choice, 'train_epoch') \
                 as patch_train:
                patch_train.return_value = 1, {}
                pipeline.fit(fit_dictionary_tabular)
        except Exception as e:
            pytest.fail(f"Failed on config={config} with {e}")

        # we expect the output to have the same batch size as the test input,
        # and number of outputs per batch sample equal to the number of classes ("num_classes" in dataset_properties)
        expected_output_shape = (
            X.shape[0],
            fit_dictionary_tabular["dataset_properties"]["output_shape"])

        prediction = pipeline.predict_proba(X)
        assert isinstance(prediction, np.ndarray)
        assert prediction.shape == expected_output_shape
예제 #7
0
    def test_pipeline_fit(self):
        """This test makes sure that the pipeline is able to fit
        given random combinations of hyperparameters across the pipeline"""

        pipeline = TabularClassificationPipeline(
            dataset_properties=self.dataset_properties)
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)
        pipeline.fit({
            'num_features':
            self.num_features,
            'num_classes':
            self.num_classes,
            'numerical_columns':
            list(range(self.num_features)),
            'categorical_columns': [],
            'categories': [],
            'X_train':
            self.X,
            'y_train':
            self.y,
            'train_indices':
            list(range(self.X.shape[0] // 2)),
            'val_indices':
            list(range(self.X.shape[0] // 2, self.X.shape[0])),
            'is_small_preprocess':
            False,
            # Training configuration
            'dataset_properties':
            self.dataset_properties,
            'job_id':
            'example_tabular_classification_1',
            'device':
            'cpu',
            'budget_type':
            'epochs',
            'epochs':
            5,
            'torch_num_threads':
            1,
            'early_stopping':
            20,
            'working_dir':
            '/tmp',
            'use_tensorboard_logger':
            True,
            'use_pynisher':
            False,
            'metrics_during_training':
            True,
            'split_id':
            0,
            'backend':
            self.backend,
        })

        # To make sure we fitted the model, there should be a
        # run summary object with accuracy
        self.assertIsNotNone(pipeline.named_steps['trainer'].run_summary)
    def test_network_optimizer_lr_handshake(self, fit_dictionary_tabular):
        """Fitting a network should put the network in the X"""
        # Create the pipeline to check. A random config should be sufficient
        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'])
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        # Make sure that fitting a network adds a "network" to X
        assert 'network' in pipeline.named_steps.keys()
        fit_dictionary_tabular['network_embedding'] = torch.nn.Linear(3, 3)
        fit_dictionary_tabular['network_backbone'] = torch.nn.Linear(3, 4)
        fit_dictionary_tabular['network_head'] = torch.nn.Linear(4, 1)
        X = pipeline.named_steps['network'].fit(
            fit_dictionary_tabular, None).transform(fit_dictionary_tabular)
        assert 'network' in X

        # Then fitting a optimizer should fail if no network:
        assert 'optimizer' in pipeline.named_steps.keys()
        with pytest.raises(
                ValueError,
                match=
                r"To fit .+?, expected fit dictionary to have 'network' but got .*"
        ):
            pipeline.named_steps['optimizer'].fit({'dataset_properties': {}},
                                                  None)

        # No error when network is passed
        X = pipeline.named_steps['optimizer'].fit(X, None).transform(X)
        assert 'optimizer' in X
        assert isinstance(
            pipeline.named_steps['optimizer'].choice.get_optimizer(),
            torch.optim.Optimizer)

        # Then fitting a optimizer should fail if no network:
        assert 'lr_scheduler' in pipeline.named_steps.keys()
        with pytest.raises(
                ValueError,
                match=
                r"To fit .+?, expected fit dictionary to have 'optimizer' but got .*"
        ):
            pipeline.named_steps['lr_scheduler'].fit(
                {'dataset_properties': {}}, None)

        # No error when network is passed
        X = pipeline.named_steps['lr_scheduler'].fit(X, None).transform(X)
        assert 'lr_scheduler' in X
        if isinstance(pipeline.named_steps['lr_scheduler'].choice,
                      NoScheduler):
            pytest.skip("This scheduler does not support `get_scheduler`")
        lr_scheduler = pipeline.named_steps[
            'lr_scheduler'].choice.get_scheduler()
        if isinstance(lr_scheduler,
                      torch.optim.lr_scheduler.ReduceLROnPlateau):
            pytest.skip("This scheduler is not a child of _LRScheduler")
        assert isinstance(lr_scheduler, _LRScheduler)
예제 #9
0
def random_search_and_save(fit_dictionary: typing.Dict[str, typing.Any],
                           backend: Backend, num_models: int) -> None:
    """
    A function to generate randomly fitted pipelines.
    It inefficiently pass the data in the fit dictionary, as there is no datamanager yet.

    It uses the backend to save the models and predictions for the ensemble selection
    """

    # Ensemble selection will evaluate performance on the OOF predictions. Store the OOF
    # Ground truth
    datamanager = backend.load_datamanager()
    X_train, y_train = datamanager.train_tensors
    X_test, y_test = (None, None)
    if datamanager.test_tensors is not None:
        X_test, y_test = datamanager.test_tensors
    targets = np.take(y_train, fit_dictionary['val_indices'], axis=0)
    backend.save_targets_ensemble(targets)

    for idx in range(num_models):
        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary['dataset_properties'])

        # Sample a random configuration
        pipeline_cs = pipeline.get_hyperparameter_search_space()
        config = pipeline_cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        # Fit the sample configuration
        pipeline.fit(fit_dictionary)

        # Predict using the fit model
        ensemble_predictions = pipeline.predict(
            np.take(X_train, fit_dictionary['val_indices'], axis=0))
        test_predictions = pipeline.predict(X_test)

        backend.save_numrun_to_dir(
            seed=fit_dictionary['seed'],
            idx=idx,
            budget=fit_dictionary['epochs'],
            model=pipeline,
            cv_model=None,
            ensemble_predictions=ensemble_predictions,
            valid_predictions=None,
            test_predictions=test_predictions,
        )

        score = accuracy_score(y_test, np.argmax(test_predictions, axis=1))
        print(f"Fitted a pipeline {idx} with score = {score}")

    return
예제 #10
0
    def test_network_optimizer_lr_handshake(self):
        """Fitting a network should put the network in the X"""

        # Create the pipeline to check. A random config should be sufficient
        dataset_properties = {
            'numerical_columns': [],
            'categorical_columns': [],
            'task_type': 'tabular_classification'
        }
        pipeline = TabularClassificationPipeline(
            dataset_properties=dataset_properties)
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        # Make sure that fitting a network adds a "network" to X
        self.assertIn('network', pipeline.named_steps.keys())
        X = pipeline.named_steps['network'].fit(
            {
                'num_features': 10,
                'num_classes': 2,
                'X_train': self.X,
                'y_train': self.y
            }, None).transform({})
        self.assertIn('network', X)

        # Then fitting a optimizer should fail if no network:
        self.assertIn('optimizer', pipeline.named_steps.keys())
        with self.assertRaisesRegex(
                ValueError,
                r"To fit .+?, expected fit dictionary to have 'network' but got .*"
        ):
            pipeline.named_steps['optimizer'].fit({}, None)

        # No error when network is passed
        X = pipeline.named_steps['optimizer'].fit(X, None).transform(X)
        self.assertIn('optimizer', X)

        # Then fitting a optimizer should fail if no network:
        self.assertIn('lr_scheduler', pipeline.named_steps.keys())
        with self.assertRaisesRegex(
                ValueError,
                r"To fit .+?, expected fit dictionary to have 'optimizer' but got .*"
        ):
            pipeline.named_steps['lr_scheduler'].fit({}, None)

        # No error when network is passed
        X = pipeline.named_steps['lr_scheduler'].fit(X, None).transform(X)
        self.assertIn('optimizer', X)
    def test_pipeline_transform(self, fit_dictionary_tabular):
        """
        In the context of autopytorch, transform expands a fit dictionary with
        components that where previously fit. We can use this as a nice way to make sure
        that fit properly work.
        This code is added in light of components not properly added to the fit dicitonary
        """

        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'])
        cs = pipeline.get_hyperparameter_search_space()
        config = cs.sample_configuration()
        pipeline.set_hyperparameters(config)

        with unittest.mock.patch.object(pipeline.named_steps['trainer'].choice, 'train_epoch') \
             as patch_train:
            patch_train.return_value = 1, {}
            # We do not want to make the same early preprocessing operation to the fit dictionary
            pipeline.fit(fit_dictionary_tabular.copy())

        transformed_fit_dictionary_tabular = pipeline.transform(
            fit_dictionary_tabular)

        # First, we do not lose anyone! (We use a fancy subset containment check)
        assert fit_dictionary_tabular.items(
        ) <= transformed_fit_dictionary_tabular.items()

        # Then the pipeline should have added the following keys
        expected_keys = {
            'imputer', 'encoder', 'scaler', 'tabular_transformer',
            'preprocess_transforms', 'network', 'optimizer', 'lr_scheduler',
            'train_data_loader', 'val_data_loader', 'run_summary'
        }
        assert expected_keys.issubset(
            set(transformed_fit_dictionary_tabular.keys()))

        # Then we need to have transformations being created.
        assert len(
            get_preprocess_transforms(transformed_fit_dictionary_tabular)) > 0

        # We expect the transformations to be in the pipeline at anytime for inference
        assert 'preprocess_transforms' in transformed_fit_dictionary_tabular.keys(
        )
예제 #12
0
    'epochs': 100,
    'runtime': 3600,
    'torch_num_threads': 1,
    'early_stopping': 20,
    'use_tensorboard_logger': True,
    'use_pynisher': False,
    'metrics_during_training': True,
    'backend': backend,
    'split_id': 0,
}

# Configuration space
pipeline_cs = pipeline.get_hyperparameter_search_space()
print("Pipeline CS:\n", '_' * 40, f"\n{pipeline_cs}")
config = pipeline_cs.sample_configuration()
print("Pipeline Random Config:\n", '_' * 40, f"\n{config}")
pipeline.set_hyperparameters(config)

# Make sure the working directory exists. Something that backend will handle
os.makedirs('./tmp/example_tabular_classification_1', exist_ok=True)

# Fit the pipeline
print("Fitting the pipeline...")
pipeline.fit(fit_dictionary)

# Showcase some components of the pipeline
print(pipeline)

# Showcase performance of pipeline
print(pipeline.named_steps['trainer'].run_summary.repr_last_epoch())
예제 #13
0
    def test_pipeline_fit(self, fit_dictionary_tabular, embedding, backbone,
                          head):
        """This test makes sure that the pipeline is able to fit
        every combination of network embedding, backbone, head"""

        # increase number of epochs to test for performance
        fit_dictionary_tabular['epochs'] = 50

        include = {
            'network_backbone': [backbone],
            'network_head': [head],
            'network_embedding': [embedding]
        }

        if len(fit_dictionary_tabular['dataset_properties']
               ['categorical_columns']
               ) == 0 and embedding == 'LearnedEntityEmbedding':
            pytest.skip(
                "Learned Entity Embedding is not used with numerical only data"
            )
        pipeline = TabularClassificationPipeline(
            dataset_properties=fit_dictionary_tabular['dataset_properties'],
            include=include)

        cs = pipeline.get_hyperparameter_search_space()
        config = cs.get_default_configuration()

        assert embedding == config.get('network_embedding:__choice__', None)
        assert backbone == config.get('network_backbone:__choice__', None)
        assert head == config.get('network_head:__choice__', None)
        pipeline.set_hyperparameters(config)
        # Early stop to the best configuration seen
        fit_dictionary_tabular['early_stopping'] = 50

        pipeline.fit(fit_dictionary_tabular)

        # To make sure we fitted the model, there should be a
        # run summary object with accuracy
        run_summary = pipeline.named_steps['trainer'].run_summary
        assert run_summary is not None

        # Make sure that performance was properly captured
        assert run_summary.performance_tracker['train_loss'][1] > 0
        assert run_summary.total_parameter_count > 0
        assert 'accuracy' in run_summary.performance_tracker['train_metrics'][
            1]

        # Make sure default pipeline achieves a good score for dummy datasets
        epoch_where_best = int(
            np.argmax([
                run_summary.performance_tracker['val_metrics'][e]['accuracy']
                for e in range(
                    1,
                    len(run_summary.performance_tracker['val_metrics']) + 1)
            ])) + 1  # Epochs start at 1
        score = run_summary.performance_tracker['val_metrics'][
            epoch_where_best]['accuracy']

        assert score >= 0.8, run_summary.performance_tracker['val_metrics']

        # Check that early stopping happened, if it did

        # We should not stop before patience
        assert run_summary.get_last_epoch(
        ) >= fit_dictionary_tabular['early_stopping']

        # we should not be greater than max allowed epoch
        assert run_summary.get_last_epoch() <= fit_dictionary_tabular['epochs']

        # every trained epoch has a val metric
        assert run_summary.get_last_epoch() == max(
            list(run_summary.performance_tracker['train_metrics'].keys()))

        epochs_since_best = run_summary.get_last_epoch(
        ) - run_summary.get_best_epoch()
        if epochs_since_best >= fit_dictionary_tabular['early_stopping']:
            assert run_summary.get_best_epoch() == epoch_where_best

        # Make sure a network was fit
        assert isinstance(pipeline.named_steps['network'].get_network(),
                          torch.nn.Module)