def test_cpd_hessian_optimize_offdiag(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list hessian = ad.hessian(loss, [A, B, C]) hessian_offdiag = [hessian[0][1], hessian[1][0]] for node in hessian_offdiag: optimize(node) assert isinstance(node, ad.AddNode) num_operations = len( list( filter(lambda x: isinstance(x, ad.OpNode), find_topo_sort([node])))) # This is currently non-deterministic. # assert num_operations == 14 executor = ad.Executor(hessian_offdiag) hes_diag_vals = executor.run(feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, })
def test_cpd_hessian_optimize_diag(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list hessian = ad.hessian(loss, [A, B, C]) hessian_diag = [hessian[0][0], hessian[1][1], hessian[2][2]] for node in hessian_diag: node = optimize(node) assert isinstance(node, ad.AddNode) num_operations = len( list( filter(lambda x: isinstance(x, ad.OpNode), find_topo_sort([node])))) """ Use this assertion to test the optimize function. 5 operations: 1. T.einsum('ca,cb->ab',A,A), 2. T.einsum('ca,cb->ab',B,B), 3. T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)), 4. T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10)), 5. (T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10))+ T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10))) """ assert num_operations == 5 executor = ad.Executor(hessian_diag) hes_diag_vals = executor.run(feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, }) expected_hes_diag_val = [ 2 * T.einsum('eb,ed,fb,fd,ac->abcd', B_val, B_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, B_val, B_val, T.identity(size)) ] assert T.norm(hes_diag_vals[0] - expected_hes_diag_val[0]) < 1e-8 assert T.norm(hes_diag_vals[1] - expected_hes_diag_val[1]) < 1e-8 assert T.norm(hes_diag_vals[2] - expected_hes_diag_val[2]) < 1e-8
def cpd_als_shared_exec(dim, size, rank, num_iter, input_val=[]): A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) full_hessian = ad.hessian(loss, A_list) hessians = [full_hessian[i][i] for i in range(len(full_hessian))] grads = ad.gradients(loss, A_list) updates = [ ad.tensordot(ad.tensorinv(hes), grad, [[2, 3], [0, 1]]) for (hes, grad) in zip(hessians, grads) ] new_A_list = [simplify(A - update) for (A, update) in zip(A_list, updates)] new_A_list = generate_sequential_optimal_tree(new_A_list, A_list) executor = ad.Executor(new_A_list) executor_loss = ad.Executor([simplify(loss)]) if input_val == []: A_val_list, input_tensor_val = init_rand_cp(dim, size, rank) else: A_val_list, input_tensor_val = input_val for iter in range(num_iter): t0 = time.time() # als iterations for i in range(len(A_list)): feed_dict = dict(zip(A_list, A_val_list)) feed_dict.update({input_tensor: input_tensor_val}) if i == 0: A_val_list[0], = executor.run(feed_dict=feed_dict, out_nodes=[new_A_list[0]]) else: A_val_list[i], = executor.run(feed_dict=feed_dict, reset_graph=False, evicted_inputs=[A_list[i - 1]], out_nodes=[new_A_list[i]]) feed_dict = dict(zip(A_list, A_val_list)) feed_dict.update({input_tensor: input_tensor_val}) loss_val, = executor_loss.run(feed_dict=feed_dict) print(f'At iteration {iter} the loss is: {loss_val}') t1 = time.time() print(f"[ {iter} ] Sweep took {t1 - t0} seconds") return A_val_list
def test_hessian_quadratic(backendopt): for datatype in backendopt: T.set_backend(datatype) x = ad.Variable(name="x", shape=[3]) H = ad.Variable(name="H", shape=[3, 3]) y = ad.einsum("i,ij,j->", x, H, x) hessian = ad.hessian(y, [x]) executor = ad.Executor([hessian[0][0]]) x_val = T.random([3]) H_val = T.random((3, 3)) hessian_val, = executor.run(feed_dict={x: x_val, H: H_val}) assert T.array_equal(hessian_val, H_val + T.transpose(H_val))
def tucker_als_graph_shared_exec(dim, size, rank): """ Build the graph used for Tucker ALS with shared execution. Parameters ---------- dim: dimensionality of the input tensor size: the size of input tensor's each dim rank: the rank of the decomposition Returns ------- tg: an TuckerGraph object executor: An shared executor loss: the optimized graph for tucker loss updates: an list containing updates graphs for each dimension intermediates: list of einsum nodes. Each node is the objective each Tucker ALS step optimized for """ tg = TuckerGraph(dim, size, rank) updates = [] for i in range(dim): core_A = tg.intermediates[i] hes = ad.hessian(tg.losses[i], [core_A]) hes = hes[0][0] grad, = ad.gradients(tg.losses[i], [core_A]) new_core_A = core_A - ad.tensordot( ad.tensorinv(hes), grad, [[i + dim for i in range(dim)], [i for i in range(dim)]]) updates.append(simplify(new_core_A)) loss = simplify(tg.losses[0]) for i in range(1, len(tg.losses)): assert loss.name == simplify(tg.losses[i]).name updates = generate_sequential_optimal_tree(updates, tg.A_list) executor_updates = ad.Executor(updates) executor_loss = ad.Executor([loss]) return tg, executor_updates, executor_loss, loss, updates, tg.intermediates
def tucker_als_graph(dim, size, rank): """ Build the graph used for Tucker ALS. Parameters ---------- dim: dimensionality of the input tensor size: the size of input tensor's each dim rank: the rank of the decomposition Returns ------- tg: an TuckerGraph object executors: list of executors. Each executor is used for one step of Tucker ALS intermediates: list of einsum nodes. Each node is the objective each Tucker ALS step optimized for """ tg = TuckerGraph(dim, size, rank) executors_update = [] for i in range(dim): core_A = tg.intermediates[i] hes = ad.hessian(tg.losses[i], [core_A]) hes = hes[0][0] grad, = ad.gradients(tg.losses[i], [core_A]) new_core_A = core_A - ad.tensordot( ad.tensorinv(hes), grad, [[i + dim for i in range(dim)], [i for i in range(dim)]]) executor = ad.Executor([simplify(new_core_A)]) executors_update.append(executor) executor_loss = ad.Executor([simplify(tg.losses[0])]) return tg, executors_update, executor_loss, tg.intermediates
def _get_sub_hessian(cls, index, mpo_graph, mps_graph): # rebuild mps graph intermediate_set = { mps_graph.inputs[index], mps_graph.inputs[index + 1] } split_input_nodes = list(set(mps_graph.inputs) - intermediate_set) mps = split_einsum(mps_graph.output, split_input_nodes) # get the intermediate node intermediate, = [ node for node in mps.inputs if isinstance(node, ad.EinsumNode) ] mps_outer_product = ad.tensordot(mps, mps, axes=[[], []]) mpo_axes = list(range(len(mpo_graph.output.shape))) # The 0.5 factor makes sure that the Hessian can be written as an einsum objective = 0.5 * ad.tensordot( mps_outer_product, mpo_graph.output, axes=[mpo_axes, mpo_axes]) hes = ad.hessian(objective, [intermediate]) return intermediate, hes[0][0]
def cpd_als(dim, size, rank, num_iter, input_val=[]): A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) full_hessian = ad.hessian(loss, A_list) hessians = [full_hessian[i][i] for i in range(len(full_hessian))] grads = ad.gradients(loss, A_list) updates = [ ad.tensordot(ad.tensorinv(hes), grad, [[2, 3], [0, 1]]) for (hes, grad) in zip(hessians, grads) ] new_A_list = [simplify(A - update) for (A, update) in zip(A_list, updates)] executor = ad.Executor(new_A_list) executor_loss = ad.Executor([simplify(loss)]) if input_val == []: A_val_list, input_tensor_val = init_rand_cp(dim, size, rank) else: A_val_list, input_tensor_val = input_val for iter in range(num_iter): # als iterations for i in range(len(A_list)): feed_dict = dict(zip(A_list, A_val_list)) feed_dict.update({input_tensor: input_tensor_val}) A_val_list[i], = executor.run(feed_dict=feed_dict, out_nodes=[new_A_list[i]]) feed_dict = dict(zip(A_list, A_val_list)) feed_dict.update({input_tensor: input_tensor_val}) loss_val, = executor_loss.run(feed_dict=feed_dict) print(f'At iteration {iter} the loss is: {loss_val}') return A_val_list
def test_cpd_hessian_simplify(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list hessian = ad.hessian(loss, [A, B, C]) # TODO (issue #101): test the off-diagonal elements hessian_diag = [hessian[0][0], hessian[1][1], hessian[2][2]] for node in hessian_diag: node = simplify(node) input_node = node.inputs[0] assert len(input_node.inputs) == 5 executor = ad.Executor(hessian_diag) hes_diag_vals = executor.run(feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, }) expected_hes_diag_val = [ 2 * T.einsum('eb,ed,fb,fd,ac->abcd', B_val, B_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, B_val, B_val, T.identity(size)) ] assert T.norm(hes_diag_vals[0] - expected_hes_diag_val[0]) < 1e-8 assert T.norm(hes_diag_vals[1] - expected_hes_diag_val[1]) < 1e-8 assert T.norm(hes_diag_vals[2] - expected_hes_diag_val[2]) < 1e-8