def test__1d__via_light_obj_from(lp_0): visuals_1d = aplt.Visuals1D() include_1d = aplt.Include1D(half_light_radius=True) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_light_obj_from(light_obj=lp_0) assert visuals_1d_via.half_light_radius == lp_0.half_light_radius include_1d = aplt.Include1D(half_light_radius=False) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_light_obj_from(light_obj=lp_0) assert visuals_1d_via.half_light_radius is None
def __init__( self, fit: FitPointDataset, mat_plot_1d: aplt.MatPlot1D = aplt.MatPlot1D(), visuals_1d: aplt.Visuals1D = aplt.Visuals1D(), include_1d: aplt.Include1D = aplt.Include1D(), mat_plot_2d: aplt.MatPlot2D = aplt.MatPlot2D(), visuals_2d: aplt.Visuals2D = aplt.Visuals2D(), include_2d: aplt.Include2D = aplt.Include2D(), ): super().__init__( mat_plot_1d=mat_plot_1d, visuals_1d=visuals_1d, include_1d=include_1d, mat_plot_2d=mat_plot_2d, include_2d=include_2d, visuals_2d=visuals_2d, ) self.fit = fit
def __init__( self, point_dict: PointDict, mat_plot_1d: aplt.MatPlot1D = aplt.MatPlot1D(), visuals_1d: aplt.Visuals1D = aplt.Visuals1D(), include_1d: aplt.Include1D = aplt.Include1D(), mat_plot_2d: aplt.MatPlot2D = aplt.MatPlot2D(), visuals_2d: aplt.Visuals2D = aplt.Visuals2D(), include_2d: aplt.Include2D = aplt.Include2D(), ): super().__init__( mat_plot_1d=mat_plot_1d, visuals_1d=visuals_1d, include_1d=include_1d, mat_plot_2d=mat_plot_2d, include_2d=include_2d, visuals_2d=visuals_2d, ) self.point_dict = point_dict
def test__1d__via_mass_obj_from(mp_0, grid_2d_7x7): visuals_1d = aplt.Visuals1D() include_1d = aplt.Include1D(einstein_radius=True) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_mass_obj_from(mass_obj=mp_0, grid=grid_2d_7x7) assert visuals_1d_via.einstein_radius == mp_0.einstein_radius_from( grid=grid_2d_7x7) include_1d = aplt.Include1D(einstein_radius=False) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_mass_obj_from(mass_obj=mp_0, grid=grid_2d_7x7) assert visuals_1d_via.einstein_radius is None
def test__1d__via_light_obj_list_from(lp_0): visuals_1d = aplt.Visuals1D() include_1d = aplt.Include1D(half_light_radius=True) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_light_obj_list_from( light_obj_list=[lp_0, lp_0], low_limit=1.0) assert visuals_1d_via.half_light_radius == lp_0.half_light_radius assert visuals_1d_via.half_light_radius_errors[0][ 0] == lp_0.half_light_radius include_1d = aplt.Include1D(half_light_radius=False) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_light_obj_list_from( light_obj_list=[lp_0, lp_0], low_limit=1.0) assert visuals_1d_via.half_light_radius is None assert visuals_1d_via.half_light_radius_errors is None
def test__1d__via_mass_obj_list_from(mp_0, grid_2d_7x7): visuals_1d = aplt.Visuals1D() include_1d = aplt.Include1D(einstein_radius=True) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_mass_obj_list_from( mass_obj_list=[mp_0, mp_0], grid=grid_2d_7x7, low_limit=1.0) assert visuals_1d_via.einstein_radius == mp_0.einstein_radius_from( grid=grid_2d_7x7) assert visuals_1d_via.einstein_radius_errors[0][ 0] == mp_0.einstein_radius_from(grid=grid_2d_7x7) include_1d = aplt.Include1D(einstein_radius=False) get_visuals = GetVisuals1D(include=include_1d, visuals=visuals_1d) visuals_1d_via = get_visuals.via_mass_obj_list_from( mass_obj_list=[mp_0, mp_0], grid=grid_2d_7x7, low_limit=1.0) assert visuals_1d_via.einstein_radius is None assert visuals_1d_via.einstein_radius_errors is None
def __init__( self, fit: FitInterferometer, mat_plot_1d: aplt.MatPlot1D = aplt.MatPlot1D(), visuals_1d: aplt.Visuals1D = aplt.Visuals1D(), include_1d: aplt.Include1D = aplt.Include1D(), mat_plot_2d: aplt.MatPlot2D = aplt.MatPlot2D(), visuals_2d: aplt.Visuals2D = aplt.Visuals2D(), include_2d: aplt.Include2D = aplt.Include2D(), ): """ Plots the attributes of `FitInterferometer` objects using the matplotlib method `imshow()` and many other matplotlib functions which customize the plot's appearance. The `mat_plot_1d` and `mat_plot_2d` attributes wrap matplotlib function calls to make the figure. By default, the settings passed to every matplotlib function called are those specified in the `config/visualize/mat_wrap/*.ini` files, but a user can manually input values into `MatPlot2d` to customize the figure's appearance. Overlaid on the figure are visuals, contained in the `Visuals1D` and `Visuals2D` objects. Attributes may be extracted from the `FitInterferometer` and plotted via the visuals object, if the corresponding entry is `True` in the `Include1D` or `Include2D` object or the `config/visualize/include.ini` file. Parameters ---------- fit The fit to an interferometer dataset the plotter plots. mat_plot_1d Contains objects which wrap the matplotlib function calls that make 1D plots. visuals_1d Contains 1D visuals that can be overlaid on 1D plots. include_1d Specifies which attributes of the `FitInterferometer` are extracted and plotted as visuals for 1D plots. mat_plot_2d Contains objects which wrap the matplotlib function calls that make 2D plots. visuals_2d Contains 2D visuals that can be overlaid on 2D plots. include_2d Specifies which attributes of the `FitInterferometer` are extracted and plotted as visuals for 2D plots. """ super().__init__( mat_plot_1d=mat_plot_1d, include_1d=include_1d, visuals_1d=visuals_1d, mat_plot_2d=mat_plot_2d, include_2d=include_2d, visuals_2d=visuals_2d, ) self.fit = fit self._fit_interferometer_meta_plotter = FitInterferometerPlotterMeta( fit=self.fit, get_visuals_2d_real_space=self.get_visuals_2d_real_space, mat_plot_1d=self.mat_plot_1d, include_1d=self.include_1d, visuals_1d=self.visuals_1d, mat_plot_2d=self.mat_plot_2d, include_2d=self.include_2d, visuals_2d=self.visuals_2d, ) self.subplot = self._fit_interferometer_meta_plotter.subplot self.subplot_fit_interferometer = ( self._fit_interferometer_meta_plotter.subplot_fit_interferometer) self.subplot_fit_dirty_images = ( self._fit_interferometer_meta_plotter.subplot_fit_dirty_images)
def __init__( self, tracer: Tracer, grid: aa.type.Grid2DLike, mat_plot_1d: aplt.MatPlot1D = aplt.MatPlot1D(), visuals_1d: aplt.Visuals1D = aplt.Visuals1D(), include_1d: aplt.Include1D = aplt.Include1D(), mat_plot_2d: aplt.MatPlot2D = aplt.MatPlot2D(), visuals_2d: aplt.Visuals2D = aplt.Visuals2D(), include_2d: aplt.Include2D = aplt.Include2D(), ): """ Plots the attributes of `Tracer` objects using the matplotlib methods `plot()` and `imshow()` and many other matplotlib functions which customize the plot's appearance. The `mat_plot_1d` and `mat_plot_2d` attributes wrap matplotlib function calls to make the figure. By default, the settings passed to every matplotlib function called are those specified in the `config/visualize/mat_wrap/*.ini` files, but a user can manually input values into `MatPlot2D` to customize the figure's appearance. Overlaid on the figure are visuals, contained in the `Visuals1D` and `Visuals2D` objects. Attributes may be extracted from the `MassProfile` and plotted via the visuals object, if the corresponding entry is `True` in the `Include1D` or `Include2D` object or the `config/visualize/include.ini` file. Parameters ---------- tracer The tracer the plotter plots. grid The 2D (y,x) grid of coordinates used to evaluate the tracer's light and mass quantities that are plotted. mat_plot_1d Contains objects which wrap the matplotlib function calls that make 1D plots. visuals_1d Contains 1D visuals that can be overlaid on 1D plots. include_1d Specifies which attributes of the `MassProfile` are extracted and plotted as visuals for 1D plots. mat_plot_2d Contains objects which wrap the matplotlib function calls that make 2D plots. visuals_2d Contains 2D visuals that can be overlaid on 2D plots. include_2d Specifies which attributes of the `MassProfile` are extracted and plotted as visuals for 2D plots. """ super().__init__( mat_plot_1d=mat_plot_1d, visuals_1d=visuals_1d, include_1d=include_1d, mat_plot_2d=mat_plot_2d, include_2d=include_2d, visuals_2d=visuals_2d, ) self.tracer = tracer self.grid = grid self._mass_plotter = MassPlotter( mass_obj=self.tracer, grid=self.grid, get_visuals_2d=self.get_visuals_2d, mat_plot_2d=self.mat_plot_2d, include_2d=self.include_2d, visuals_2d=self.visuals_2d, )