def test_gp_mcmc_fit(tuning_job_state): def tuning_job_state_mcmc(X, Y) -> TuningJobState: Y = [dictionarize_objective(y) for y in Y] return TuningJobState( HyperparameterRanges_Impl( HyperparameterRangeContinuous('x', -4., 4., LinearScaling())), [CandidateEvaluation(x, y) for x, y in zip(X, Y)], [], []) _set_seeds(0) def f(x): return 0.1 * np.power(x, 3) X = np.concatenate((np.random.uniform(-4., -1., 10), np.random.uniform(1., 4., 10))) Y = f(X) X_test = np.sort(np.random.uniform(-1., 1., 10)) X = [(x, ) for x in X] X_test = [(x, ) for x in X_test] tuning_job_state = tuning_job_state_mcmc(X, Y) # checks if fitting is running random_seed = 0 gpmodel = default_gpmodel_mcmc(tuning_job_state, random_seed, mcmc_config=DEFAULT_MCMC_CONFIG) model = GPMXNetModel(tuning_job_state, DEFAULT_METRIC, random_seed, gpmodel, fit_parameters=True, num_fantasy_samples=20) X = [tuning_job_state.hp_ranges.to_ndarray(x) for x in X] predictions = model.predict(np.array(X)) Y_std_list = [stds for means, stds in predictions] Y_mean_list = [means for means, stds in predictions] Y_mean = np.mean(Y_mean_list, axis=0) Y_std = np.mean(Y_std_list, axis=0) assert np.all(np.abs(Y_mean - Y) < 1e-1), \ "in a noiseless setting, mean of GP should coincide closely with outputs at training points" X_test = [tuning_job_state.hp_ranges.to_ndarray(x) for x in X_test] predictions_test = model.predict(np.array(X_test)) Y_std_test_list = [stds for means, stds in predictions_test] Y_std_test = np.mean(Y_std_test_list, axis=0) assert np.max(Y_std) < np.min(Y_std_test), \ "Standard deviation on un-observed points should be greater than at observed ones"
def test_gp_fit(tuning_job_state): _set_seeds(0) X = [ (0.0, 0.0), (1.0, 0.0), (0.0, 1.0), (1.0, 1.0), ] Y = [np.sum(x) * 10.0 for x in X] # checks if fitting is running random_seed = 0 gpmodel = default_gpmodel(tuning_job_state, random_seed, optimization_config=DEFAULT_OPTIMIZATION_CONFIG) model = GPMXNetModel(tuning_job_state, DEFAULT_METRIC, random_seed, gpmodel, fit_parameters=True, num_fantasy_samples=20) X = [tuning_job_state.hp_ranges.to_ndarray(x) for x in X] Y_mean, Y_std = model.predict(np.array(X))[0] assert np.all(np.abs(Y_mean - Y) < 1e-1), \ "in a noiseless setting, mean of GP should coincide closely with outputs at training points" X_test = [ (0.2, 0.2), (0.4, 0.2), (0.1, 0.9), (0.5, 0.5), ] X_test = [tuning_job_state.hp_ranges.to_ndarray(x) for x in X_test] Y_mean_test, Y_std_test = model.predict(np.array(X_test))[0] assert np.min(Y_std) < np.min(Y_std_test), \ "Standard deviation on un-observed points should be greater than at observed ones"
def fit_predict_ours(data: dict, random_seed: int, optimization_config: OptimizationConfig, test_intermediates: Optional[dict] = None) -> dict: # Create surrogate model num_dims = len(data['ss_limits']) _gpmodel = GaussianProcessRegression( kernel=Matern52(num_dims, ARD=True), mean=ZeroMeanFunction(), # Instead of ScalarMeanFunction optimization_config=optimization_config, random_seed=random_seed, test_intermediates=test_intermediates) model = GPMXNetModel(data['state'], DEFAULT_METRIC, random_seed, _gpmodel, fit_parameters=True, num_fantasy_samples=20) model_params = model.get_params() print('Hyperparameters: {}'.format(model_params)) # Prediction means, stddevs = model.predict(data['test_inputs'])[0] return {'means': means, 'stddevs': stddevs}