def __init__( self, cutoff: DiscreteValue(min=0, max=10), ): self.cutoff = cutoff self.tagger = _UnigramTagger self.values = dict(cutoff=cutoff) NltkTagger.__init__(self)
def __init__( self, affix_length: Discrete(min=-2, max=-6), min_stem_length: Discrete(min=1, max=4), cutoff: Discrete(min=0, max=10), backoff: algorithm(Tuple(List(List(Word())), List(List(Postag()))), List(List(Postag()))), ): self.affix_length = affix_length self.min_stem_length = min_stem_length self.cutoff = cutoff self.backoff = backoff self.tagger = _AffixTagger self.values = dict( affix_length=affix_length, min_stem_length=min_stem_length, cutoff=cutoff, backoff=backoff, ) NltkTagger.__init__(self)
def __init__( self, affix_length: DiscreteValue(min=2, max=6), min_stem_length: DiscreteValue(min=1, max=4), cutoff: DiscreteValue(min=0, max=10), backoff: algorithm( Seq[Seq[Word]], Supervised[Seq[Seq[Postag]]], Seq[Seq[Postag]] ), ): self.affix_length = affix_length self.min_stem_length = min_stem_length self.cutoff = cutoff self.backoff = backoff self.tagger = _AffixTagger self.values = dict( affix_length=affix_length, min_stem_length=min_stem_length, cutoff=cutoff, backoff=backoff, ) NltkTagger.__init__(self)
def run(self, input: Seq[Postag]) -> Seq[Chunktag]: return NltkTagger.run(self, input)
def __init__(self, ): self.tagger = _NEChunkParserTagger self.values = dict() NltkTagger.__init__(self)
def run(self, input: List(List(Postag()))) -> List(List(Chunktag())): return NltkTagger.run(self, input)
def run( self, input: Seq[Seq[Word]], y: Supervised[Seq[Seq[Postag]]] ) -> Seq[Seq[Postag]]: return NltkTagger.run(self, input, y)
def __init__(self,): self.tagger = _ClassifierBasedPOSTagger self.values = dict() NltkTagger.__init__(self)
def run( self, input: Tuple(List(List(Word())), List(List(Postag()))) ) -> List(List(Postag())): return NltkTagger.run(self, input)