def __init__( self, tokenizer: algorithm(Document(), List(Sentence())), feature_extractor: algorithm(Sentence(), Flags()), ): self.tokenizer = tokenizer self.feature_extractor = feature_extractor
def test_polimorphic_interface(): interface = algorithm(MatrixContinuousDense(), MatrixContinuousDense()) assert interface.is_compatible(ExactAlgorithm) assert interface.is_compatible(HigherInputAlgorithm) interface = algorithm(MatrixContinuousDense(), MatrixContinuous()) assert interface.is_compatible(LowerOutputAlgorithm)
def __init__( self, tokenizer: algorithm(Sentence(), List(Word())), feature_extractor: algorithm(Word(), Flags()), include_text: Boolean(), ): self.tokenizer = tokenizer self.feature_extractor = feature_extractor self.include_text = include_text
def __init__( self, extractors: Distinct( algorithm(Word(), Flags()), exceptions=["MultipleFeatureExtractor"] ), merger: algorithm(List(Flags()), Flags()), ): self.extractors = extractors self.merger = merger
def __init__( self, lowercase: Boolean(), stopwords_remove: Boolean(), binary: Boolean(), inner_tokenizer: algorithm(Sentence(), List(Word())), inner_stemmer: algorithm(Word(), Stem()), inner_stopwords: algorithm(List(Word()), List(Word())), ): self.stopwords_remove = stopwords_remove self.inner_tokenizer = inner_tokenizer self.inner_stemmer = inner_stemmer self.inner_stopwords = inner_stopwords SklearnTransformer.__init__(self) _CountVectorizer.__init__(self, lowercase=lowercase, binary=binary)
def __init__( self, affix_length: DiscreteValue(min=2, max=6), min_stem_length: DiscreteValue(min=1, max=4), cutoff: DiscreteValue(min=0, max=10), backoff: algorithm( Seq[Seq[Word]], Supervised[Seq[Seq[Postag]]], Seq[Seq[Postag]] ), ): self.affix_length = affix_length self.min_stem_length = min_stem_length self.cutoff = cutoff self.backoff = backoff self.tagger = _AffixTagger self.values = dict( affix_length=affix_length, min_stem_length=min_stem_length, cutoff=cutoff, backoff=backoff, ) NltkTagger.__init__(self)
def __init__(self, dependance: algorithm(Word, Stem)): pass
def __init__(self, dependance: algorithm(Sentence, Document)): pass
def __init__(self, stem: algorithm(Word, Stem)): pass
def __init__(self, ub: algorithm(Sentence, Document)): pass
def __init__(self, tokenizer: algorithm(Sentence(), List(Word())), token_feature_extractor: algorithm(Word(), Flags()), # token_sentence_encoder: algorithm(Word(), ) ): pass
def __init__(self, tokenizer: algorithm(Sentence(), List(Word()))): self.tokenizer = tokenizer