def export(output: str = typer.Argument(".", help="Location to export")): """ Export previosly trained AutoML instance. """ model = AutoML.folder_load(Path(".")) model.export_portable(output)
def automl_predict( input: Path, output: Path = Path("output.csv"), model: Path = Path("."), ignore_cols: List[int] = typer.Option([]), format: str = None, ): """ 🔮 Predict with a previously trained AutoML instance. """ try: dataset = _load_dataset(format, input, ignore_cols) except ValueError as e: logger.error(f"⚠️ Error: {str(e)}") return try: automl = AutoML.folder_load(model) except TypeError as e: logger.error(f"⚠️ Error: {str(e)}") return console.print(f"🔮 Predicting {len(dataset)} items with the pipeline:") console.print(repr(automl.best_pipeline_)) X = dataset.values y = automl.predict(X) with output.open("wt") as fp: df = pd.DataFrame(y, columns=["y"]) df.to_csv(fp) console.print(f"💾 Predictions saved to [blue]{output.absolute()}[/]")
def automl_server( path: str = typer.Argument(".", help="Autogoal serialized model"), ip: str = typer.Argument( "0.0.0.0", help="Interface ip to be used by the HTTP API"), port: int = typer.Argument(8000, help="Port to be bind by the server"), ): console.print(f"Loading model from folder: {path}") model = AutoML.folder_load(Path(path)) run(model, ip, port)