예제 #1
0
 def kernel(self, points1, points2=None, degree=0, depth=1):
     arc_cosine = kernels.ArcCosine(degree, depth, white=0.0)
     if points2 is not None:
         return tf.Session().run(arc_cosine.kernel(np.array(points1, dtype=np.float32),
                                                   np.array(points2, dtype=np.float32)))
     else:
         return tf.Session().run(arc_cosine.kernel(np.array(points1, dtype=np.float32)))
예제 #2
0
 def kernel(cls, points1, points2=None, degree=0, depth=1):
     arc_cosine = kernels.ArcCosine(degree, depth, white=0.0)
     cls.session.run(tf.global_variables_initializer())
     if points2 is not None:
         return cls.session.run(
             arc_cosine.kernel(np.array(points1, dtype=np.float32),
                               np.array(points2, dtype=np.float32)))
     else:
         return cls.session.run(
             arc_cosine.kernel(np.array(points1, dtype=np.float32)))
예제 #3
0
 def diag_kernel(self, points, degree=0, depth=1):
     arc_cosine = kernels.ArcCosine(degree, depth, white=0.0)
     return tf.Session().run(arc_cosine.diag_kernel(np.array(points, dtype=np.float32)))
예제 #4
0
test_data = pd.read_csv(TEST_PATH, sep=r"\s+", header=None)
train_X = train_data.values[:, :-1]
train_Y = train_data.values[:, -1:]
test_X = test_data.values[:, :-1]
test_Y = test_data.values[:, -1:]
data = datasets.DataSet(train_X, train_Y)
test = datasets.DataSet(test_X, test_Y)

Z = init_z(data.X, NUM_INDUCING)
likelihood = likelihoods.Logistic()  # Setup initial values for the model.

if KERNEL == 'arccosine':
    kern = [
        kernels.ArcCosine(data.X.shape[1],
                          degree=DEGREE,
                          depth=DEPTH,
                          lengthscale=LENGTHSCALE,
                          std_dev=1.0,
                          input_scaling=IS_ARD) for i in range(1)
    ]
else:
    kern = [
        kernels.RadialBasis(data.X.shape[1],
                            lengthscale=LENGTHSCALE,
                            input_scaling=IS_ARD) for i in range(1)
    ]

print("Using Kernel " + KERNEL)

m = autogp.GaussianProcess(likelihood,
                           kern,
                           Z,
예제 #5
0
 def diag_kernel(cls, points, degree=0, depth=1):
     arc_cosine = kernels.ArcCosine(degree, depth, white=0.0)
     cls.session.run(tf.global_variables_initializer())
     return cls.session.run(
         arc_cosine.diag_kernel(np.array(points, dtype=np.float32)))