예제 #1
0
def test_function_overloading():
    a = pe.pseudo_Obs(17, 2.9, 'e1')
    b = pe.pseudo_Obs(4, 0.8, 'e1')

    fs = [
        lambda x: x[0] + x[1], lambda x: x[1] + x[0], lambda x: x[0] - x[1],
        lambda x: x[1] - x[0], lambda x: x[0] * x[1], lambda x: x[1] * x[0],
        lambda x: x[0] / x[1], lambda x: x[1] / x[0], lambda x: np.exp(x[0]),
        lambda x: np.sin(x[0]), lambda x: np.cos(x[0]), lambda x: np.tan(x[0]),
        lambda x: np.log(x[0]), lambda x: np.sqrt(np.abs(x[0])),
        lambda x: np.sinh(x[0]), lambda x: np.cosh(x[0]),
        lambda x: np.tanh(x[0])
    ]

    for i, f in enumerate(fs):
        t1 = f([a, b])
        t2 = pe.derived_observable(f, [a, b])
        c = t2 - t1
        assert c.is_zero()

    assert np.log(np.exp(b)) == b
    assert np.exp(np.log(b)) == b
    assert np.sqrt(b**2) == b
    assert np.sqrt(b)**2 == b

    np.arcsin(1 / b)
    np.arccos(1 / b)
    np.arctan(1 / b)
    np.arctanh(1 / b)
    np.sinc(1 / b)
예제 #2
0
 def add_to_funcs(low, upp, i):
     if (low is None) and (upp is None):
         funcs.append(lambda x: pass_through(x))
         inv_f.append(lambda x: pass_through(x))
     elif (low == 0) and (upp == 1):
         D = 10
         funcs.append(lambda x: D * np.arctanh((2 * x) - 1))
         inv_f.append(lambda x: (np.tanh(x / D) + 1) / 2)
     elif (upp is None):
         funcs.append(lambda x: (inv_adj_relu(x - low)))
         inv_f.append(lambda x: (adj_relu(x) + low))
     elif (low is None):
         funcs.append(lambda x: inv_rev_adj_relu(x - np.copy(upp)))
         inv_f.append(lambda x: np.copy(upp) + rev_adj_relu(x))
     else:
         funcs.append(lambda x: pass_through(x))
         inv_f.append(lambda x: pass_through(x))
예제 #3
0
def test_arctanh():
    fun = lambda x : 3.0 * np.arctanh(x)
    d_fun = grad(fun)
    check_grads(fun, 0.2)
    check_grads(d_fun, 0.3)
예제 #4
0
def test_arctanh():
    fun = lambda x : 3.0 * np.arctanh(x)
    d_fun = grad(fun)
    check_grads(fun, 0.2)
    check_grads(d_fun, 0.3)
예제 #5
0
def test_arctanh():
    fun = lambda x: 3.0 * np.arctanh(x)
    check_grads(fun)(0.2)
예제 #6
0
파일: generic.py 프로젝트: wesselb/lab
def arctanh(a: Numeric):
    return anp.arctanh(a)
 def inverse(self, p):
     return np.arctanh((np.clip(p, 0.4, 0.6)))
예제 #8
0
def test_arctanh():
    fun = lambda x : 3.0 * np.arctanh(x)
    check_grads(fun)(0.2)
예제 #9
0
if model_type is "scalar":

    filename_prex = "figure/initial_scalar_" + state_name + "_"
    savefilename = "data/initial_scalar_solution_" + state_name

opt_data = np.load(savefilename + "_full.npz", allow_pickle=True)

configurations = opt_data["configurations"]
controls = opt_data["controls_opt"]
simulation_first_confirmed = opt_data["simulation_first_confirmed"]
parameters = opt_data["parameters_opt"]
# y0, t_total, N_total, number_group, population_proportion, \
# t_control, number_days_per_control_change, number_control_change_times, number_time_dependent_controls = configurations

alpha = np.arctanh(2 * controls[0] - 1)
controls = (alpha, )

misfit = Misfit(configurations, parameters, controls,
                simulation_first_confirmed)

# sigma = 10 * np.ones_like(x)
prior = Laplacian(misfit.dimension, gamma=10, mean=alpha)
# prior = Laplacian(misfit.dimension, gamma=10, regularization=False)

model = Model(prior, misfit)

if __name__ == "__main__":

    print(misfit.t_total)
예제 #10
0
            sum(temporalKL))


if __name__ == '__main__':
    #with open('powerData.pkl') as f:
    #    X = pickle.load(f)
    with open('pendulous.pkl') as f:
        X = pickle.load(f)
    inputDim = 121
    seqLen = 200
    numSeq = 1
    step_size = 0.0001
    fakeData = np.random.randn(seqLen, numSeq, inputDim)
    print(fakeData.shape)

    frame_to_vect = lambda frame: np.reshape(np.arctanh(2.0 * frame - 1.0), 121
                                             )
    vect_to_frame = lambda vect: np.reshape(0.5 * np.tanh(vect) + 0.5,
                                            (11, 11))

    dataDims = {'x': 80, 'u': 1, 'a': 20}
    dataDims = {'x': 121, 'u': 0, 'a': 0}
    X = map(frame_to_vect, X)
    X = np.concatenate(map(lambda x: np.expand_dims(x, axis=0), X), axis=0)
    inputs = {'x': np.expand_dims(X, axis=0)}
    outputs = {'x': inputs['x'][:, 1:, :]}
    inputs['x'] = inputs['x'][:, :-1, :]
    #inputs = {'x': X}
    #inputs = {'x':fakeData[:,:,:dataDims['x']], 'u':fakeData[:,:,dataDims['x']:dataDims['x']+dataDims['u']],
    #          'a':fakeData[:,:,:dataDims['a']]}
    hiddenDims = {
예제 #11
0
파일: util.py 프로젝트: afcarl/autopaint
def inv_sigmoid(x):
    return np.arctanh(2.0 * x - 1.0)