예제 #1
0
    def m_step(self, expectations, datas, inputs, masks, tags, **kwargs):
        from sklearn.linear_model import LinearRegression
        D, M = self.D, self.M

        for k in range(self.K):
            xs, ys, weights = [], [], []
            for (Ez, _), data, input in zip(expectations, datas, inputs):
                xs.append(
                    np.hstack([
                        data[self.lags - l - 1:-l - 1]
                        for l in range(self.lags)
                    ] + [input[self.lags:]]))
                ys.append(data[self.lags:])
                weights.append(Ez[self.lags:, k])
            xs = np.concatenate(xs)
            ys = np.concatenate(ys)
            weights = np.concatenate(weights)

            # Fit a weighted linear regression
            lr = LinearRegression()
            lr.fit(xs, ys, sample_weight=weights)
            self.As[k], self.Vs[k], self.bs[
                k] = lr.coef_[:, :D *
                              self.lags], lr.coef_[:, D *
                                                   self.lags:], lr.intercept_

            assert np.all(np.isfinite(self.As))
            assert np.all(np.isfinite(self.Vs))
            assert np.all(np.isfinite(self.bs))

            # Update the variances
            yhats = lr.predict(xs)
            sqerr = (ys - yhats)**2
            self.inv_sigmas[k] = np.log(
                np.average(sqerr, weights=weights, axis=0))
def sample_prior(kld_sampler,
                 n_layers,
                 n_hid_units,
                 is_ResNet,
                 n_inv_steps=20,
                 alpha=.00005):

    ### DEFINE FUNCTIONS

    # define E[KLD] function
    def expected_KLD(log_tau,
                     prev_log_taus,
                     n_layers,
                     mc_samples=3,
                     sigma2_y=1.):
        tau = softplus(log_tau)
        prev_taus = softplus(prev_log_taus)

        kld_accum = 0.
        for s_idx in range(mc_samples):
            if is_ResNet:
                f0 = fprop(0., prev_taus, n_layers, n_hid_units, is_ResNet)
            else:
                f0 = fprop(-1, prev_taus, n_layers, n_hid_units, is_ResNet)
            f1 = fprop(tau, prev_taus, n_layers, n_hid_units, is_ResNet)
            kld_accum += np.mean((f0 - f1)**2 / (2 * sigma2_y))

        return kld_accum / mc_samples

    # define grad
    dEKLD_dTau = grad(expected_KLD)

    ### RUN ITERATIVE SAMPLING
    log_tau_samples = np.random.uniform(low=-2, high=-1, size=(n_layers, ))

    for layer_idx in range(n_layers):
        k_hat = kld_sampler()

        for t_idx in range(n_inv_steps):

            ekld = expected_KLD(log_tau=log_tau_samples[layer_idx],
                                prev_log_taus=log_tau_samples[:layer_idx],
                                n_layers=n_layers)
            if not np.isfinite(ekld):
                continue

            ekld_prime = dEKLD_dTau(log_tau_samples[layer_idx],
                                    log_tau_samples[:layer_idx], n_layers)
            if not np.isfinite(ekld_prime):
                continue

            if np.abs(ekld_prime) < .1:
                ekld_prime = np.sign(ekld_prime) * .1

            log_tau_samples[layer_idx] = log_tau_samples[layer_idx] - alpha / (
                ekld_prime) * (ekld - k_hat)

    return softplus(log_tau_samples)
def test_generate_all_predictions():
    """Spot-check that the predicted free energies are reasonable
    (right shape, finite, RMSE (in kcal/mol) in a reasonable range)"""
    theta = np.ones(2 * n_types)
    from time import time
    print('predicting hydration free energies with theta=ones...')
    t0 = time()
    predictions = generate_all_predictions(theta)
    t1 = time()
    print('that took {:.3f} s'.format(t1 - t0))

    # sanity check that the predictions are finite and that there's the right number of them
    assert (len(predictions) == len(molecules))
    assert (np.isfinite(predictions).all())

    # sanity check that the numerical values of the predictions aren't grossly wrong...
    pred_kcal_mol = unreduce(predictions)
    expt_kcal_mol = unreduce(expt_means)

    rmse = np.sqrt(np.mean((pred_kcal_mol - expt_kcal_mol)**2))
    print('RMSE for theta all ones: {:.3f} kcal/mol'.format(rmse))

    # first time I ran this test, it was ~7.154 kcal/mol
    assert (rmse < 10.)
    assert (rmse > 2.)

    # check that running with mbondi radii and scales gives an RMSE closer to like 2.5 kcal/mol
    theta = pack(radii=mbondi_model.get_radii(),
                 scales=mbondi_model.get_scale_factors())

    print('predicting hydration free energies with theta from mbondi model...')
    t0 = time()
    predictions = generate_all_predictions(theta)
    t1 = time()
    print('that took {:.3f} s'.format(t1 - t0))

    # sanity check that the predictions are finite and that there's the right number of them
    assert (len(predictions) == len(molecules))
    assert (np.isfinite(predictions).all())

    # sanity check that the numerical values of the predictions aren't grossly wrong...
    pred_kcal_mol = unreduce(predictions)
    expt_kcal_mol = unreduce(expt_means)

    rmse = np.sqrt(np.mean((pred_kcal_mol - expt_kcal_mol)**2))
    print('RMSE for mbondi model: {:.3f} kcal/mol'.format(rmse))

    # I think it's around 2.4 kcal/mol, but this test is saying something like 2.628 kcal/mol
    assert (rmse > 2.)
    assert (rmse < 3.)
예제 #4
0
    def elbo(self, variational_params, datas, inputs=None, masks=None, tags=None, n_samples=1):
        """
        Lower bound on the marginal likelihood p(y | theta) 
        using variational posterior q(x; phi) where phi = variational_params
        """
        elbo = 0
        for data, input, mask, tag, (q_mu, q_sigma_inv) in \
            zip(datas, inputs, masks, tags, variational_params):

            q_sigma = np.exp(q_sigma_inv)
            for sample in range(n_samples):
                # log p(theta)
                elbo += self.log_prior()

                # Sample x from the variational posterior
                x = q_mu + np.sqrt(q_sigma) * npr.randn(data.shape[0], self.D)

                # Compute log p(x | theta) = log \sum_z p(x, z | theta)
                # The "mask" for x is all ones
                x_mask = np.ones_like(x, dtype=bool)
                log_pi0 = self.init_state_distn.log_initial_state_distn(x, input, x_mask, tag)
                log_Ps = self.transitions.log_transition_matrices(x, input, x_mask, tag)
                log_likes = self.dynamics.log_likelihoods(x, input, x_mask, tag)
                log_likes += self.emissions.log_likelihoods(data, input, mask, tag, x)
                elbo += hmm_normalizer(log_pi0, log_Ps, log_likes)

                # -log q(x)
                elbo -= np.sum(-0.5 * np.log(2 * np.pi * q_sigma))
                elbo -= np.sum(-0.5 * (x - q_mu)**2 / q_sigma)

                assert np.isfinite(elbo)
        
        return elbo / n_samples
예제 #5
0
    def initialize(self, datas, inputs=None, masks=None, tags=None):
        data = np.concatenate(datas)
        ddata = np.concatenate([np.gradient(d, axis=0) for d in datas])
        ddata = (ddata - ddata.mean(0)) / ddata.std(0)
        input = np.concatenate(inputs)
        T = data.shape[0]

        # Cluster the data and its gradient before initializing
        from sklearn.cluster import KMeans
        km = KMeans(self.K)
        # km.fit(np.column_stack((data, ddata)))
        km.fit(data)
        z = km.labels_[:-self.lags]

        from sklearn.linear_model import LinearRegression

        for k in range(self.K):
            ts = np.where(z == k)[0]
            x = np.column_stack([data[ts + l]
                                 for l in range(self.lags)] + [input[ts]])
            y = data[ts + self.lags]
            lr = LinearRegression().fit(x, y)
            self.As[k] = lr.coef_[:, :self.D * self.lags]
            self.Vs[k] = lr.coef_[:, self.D * self.lags:]
            self.bs[k] = lr.intercept_

            resid = y - lr.predict(x)
            sigmas = np.var(resid, axis=0)
            self.inv_sigmas[k] = np.log(sigmas + 1e-16)
            assert np.all(np.isfinite(self.inv_sigmas))
예제 #6
0
    def elbo(self, variational_params, datas, inputs=None, masks=None, tags=None, n_samples=1):
        """
        Lower bound on the marginal likelihood p(y | theta) 
        using variational posterior q(x; phi) where phi = variational_params
        """
        elbo = 0
        for data, input, mask, tag, (q_mu, q_sigma_inv) in \
            zip(datas, inputs, masks, tags, variational_params):

            q_sigma = np.exp(q_sigma_inv)
            for sample in range(n_samples):
                # log p(theta)
                elbo += self.log_prior()

                # Sample x from the variational posterior
                x = q_mu + np.sqrt(q_sigma) * npr.randn(data.shape[0], self.D)
                x_mask = np.ones_like(x, dtype=bool)
                # Compute log p(y, x | theta) 
                elbo += np.sum(self.dynamics.log_likelihoods(x, input, x_mask, tag))
                elbo += np.sum(self.emissions.log_likelihoods(data, input, mask, tag, x))
                
                # -log q(x)
                elbo -= np.sum(-0.5 * np.log(2 * np.pi * q_sigma))
                elbo -= np.sum(-0.5 * (x - q_mu)**2 / q_sigma)

                assert np.isfinite(elbo)
        
        return elbo / n_samples
예제 #7
0
def nll(p, y, gp):
    # Update the kernel parameters:
    gp.set_parameter_vector(p)
    #  Compute the loglikelihood:
    ll = gp.log_likelihood(y, quiet=True)
    # The scipy optimizer doesn’t play well with infinities:
    return -ll if np.isfinite(ll) else 1e25
예제 #8
0
파일: lds.py 프로젝트: yahmadian/ssm
    def elbo(self,
             variational_posterior,
             datas,
             inputs=None,
             masks=None,
             tags=None,
             n_samples=1):
        """
        Lower bound on the marginal likelihood p(y | theta)
        using variational posterior q(x; phi) where phi = variational_params
        """
        elbo = 0
        for sample in range(n_samples):
            # Sample x from the variational posterior
            xs = variational_posterior.sample()

            # log p(theta)
            elbo += self.log_prior()

            # Compute log p(y, x | theta)
            for x, data, input, mask, tag in zip(xs, datas, inputs, masks,
                                                 tags):
                x_mask = np.ones_like(x, dtype=bool)
                elbo += np.sum(
                    self.dynamics.log_likelihoods(x, input, x_mask, tag))
                elbo += np.sum(
                    self.emissions.log_likelihoods(data, input, mask, tag, x))

            # -log q(x)
            elbo -= variational_posterior.log_density(xs)
            assert np.isfinite(elbo)

        return elbo / n_samples
예제 #9
0
파일: hmm.py 프로젝트: vishalbelsare/ssm
    def expected_log_likelihood(self,
                                expectations,
                                datas,
                                inputs=None,
                                masks=None,
                                tags=None):
        """
        Compute log-likelihood given current model parameters.

        :param datas: single array or list of arrays of data.
        :return total log probability of the data.
        """
        ell = 0.0
        for (Ez, Ezzp1, _), data, input, mask, tag in \
                zip(expectations, datas, inputs, masks, tags):

            pi0 = self.init_state_distn.initial_state_distn
            log_Ps = self.transitions.log_transition_matrices(
                data, input, mask, tag)
            log_likes = self.observations.log_likelihoods(
                data, input, mask, tag)

            ell += np.sum(Ez[0] * np.log(pi0))
            ell += np.sum(Ezzp1 * log_Ps)
            ell += np.sum(Ez * log_likes)
            assert np.isfinite(ell)

        return ell
예제 #10
0
파일: util.py 프로젝트: ccheng2021/kernel
def standardize(X):
    mx = np.mean(X, 0)
    stdx = np.std(X, axis=0)
    # Assume standard deviations are not 0
    Zx = old_div((X-mx),stdx)
    assert np.all(np.isfinite(Zx))
    return Zx
예제 #11
0
파일: hmm.py 프로젝트: yahmadian/ssm
        def _objective(params, itr):
            # Grab a minibatch of data
            data, input, mask, tag = _get_minibatch(itr)
            Ti = data.shape[0]

            # E step: compute expected latent states with current parameters
            Ez, Ezzp1, _ = self.expected_states(data, input, mask, tag)

            # M step: set the parameter and compute the (normalized) objective function
            self.params = params
            log_pi0 = self.init_state_distn.log_initial_state_distn(
                data, input, mask, tag)
            log_Ps = self.transitions.log_transition_matrices(
                data, input, mask, tag)
            log_likes = self.observations.log_likelihoods(
                data, input, mask, tag)

            # Compute the expected log probability
            # (Scale by number of length of this minibatch.)
            obj = self.log_prior()
            obj += np.sum(Ez[0] * log_pi0) * M
            obj += np.sum(Ezzp1 * log_Ps) * (T - M) / (Ti - 1)
            obj += np.sum(Ez * log_likes) * T / Ti
            assert np.isfinite(obj)

            return -obj / T
예제 #12
0
파일: hmm.py 프로젝트: yahmadian/ssm
    def expected_log_probability(self,
                                 expectations,
                                 datas,
                                 inputs=None,
                                 masks=None,
                                 tags=None):
        """
        Compute the log probability of the data under the current
        model parameters.

        :param datas: single array or list of arrays of data.
        :return total log probability of the data.
        """
        elp = self.log_prior()
        for (Ez, Ezzp1, _), data, input, mask, tag in \
            zip(expectations, datas, inputs, masks, tags):
            log_pi0 = self.init_state_distn.log_initial_state_distn(
                data, input, mask, tag)
            log_Ps = self.transitions.log_transition_matrices(
                data, input, mask, tag)
            log_likes = self.observations.log_likelihoods(
                data, input, mask, tag)

            # Compute the expected log probability
            elp += np.sum(Ez[0] * log_pi0)
            elp += np.sum(Ezzp1 * log_Ps)
            elp += np.sum(Ez * log_likes)
            assert np.isfinite(elp)
        return elp
예제 #13
0
    def elbo(self, variational_posterior, datas, inputs=None, masks=None, tags=None, n_samples=1):
        """
        Lower bound on the marginal likelihood p(y | theta)
        using variational posterior q(x; phi) where phi = variational_params
        """
        elbo = 0
        for sample in range(n_samples):
            # Sample x from the variational posterior
            xs = variational_posterior.sample()

            # log p(theta)
            elbo += self.log_prior()

            # log p(x, y | theta) = log \sum_z p(x, y, z | theta)
            for x, data, input, mask, tag in zip(xs, datas, inputs, masks, tags):

                # The "mask" for x is all ones
                x_mask = np.ones_like(x, dtype=bool)

                pi0 = self.init_state_distn.initial_state_distn
                Ps = self.transitions.transition_matrices(x, input, x_mask, tag)
                log_likes = self.dynamics.log_likelihoods(x, input, x_mask, tag)
                log_likes += self.emissions.log_likelihoods(data, input, mask, tag, x)
                elbo += hmm_normalizer(pi0, Ps, log_likes)

            # -log q(x)
            elbo -= variational_posterior.log_density(xs)
            assert np.isfinite(elbo)

        return elbo / n_samples
예제 #14
0
def renyii(pk0, pk1, a):
    """
    Compute the renyii divergence between two Gaussian distributions.
    """

    # Check dimensions
    assert (pk0.S.shape == pk1.S.shape)
    # Check diagonal
    p0S_is_diag = np.all(np.diag(np.diag(pk0.S)) == pk0.S)
    p1S_is_diag = np.all(np.diag(np.diag(pk1.S)) == pk1.S)

    Sa = (1 - a) * pk0.S + a * pk1.S
    # make sure eigenvalues are positive
    if np.any(np.isfinite(Sa) == 0):
        print(Sa)
    w, v = np.linalg.eig(Sa)
    #assert(np.all(w > 0))
    assert np.linalg.det(Sa) != 0
    #if np.linalg.det(Sa) == 0:
    #  print Sa
    #  return float('Inf')

    dm = pk1.m - pk0.m
    # Use precise computation for diagonal covariance matrices
    if p0S_is_diag and p1S_is_diag:
        r = a / 2. * np.dot(np.dot(dm, np.linalg.inv(Sa)), dm) + \
            (np.sum(np.log(np.diag(Sa))) - (1-a)*np.sum(np.log(np.diag(pk0.S))) - a*np.sum(np.log(np.diag(pk1.S)))) \
                / (1 - a) / 2.
    else:
        r = a / 2. * np.dot(np.dot(dm, np.linalg.inv(Sa)), dm) + \
            (np.log(np.linalg.det(Sa)) - (1-a)*np.log(np.linalg.det(pk0.S)) - a*np.log(np.linalg.det(pk1.S))) \
                / (1 - a) / 2.
    #assert(r > -1e-10)
    return max(r, 0)
예제 #15
0
def make_frame(request, hyper_params=default_hyper_params):
    frame = resample(request)
    print('resample', frame)
    frame = make_pandas_frame(frame)
    print('pandas', frame)

    frame["delta"] = frame["glucose"] - frame["glucose"].shift(1)
    print('delta', frame['delta'])
    maxdelta = hyper_params.get("maxdelta", 10)
    delta = frame["delta"]
    frame.loc[(delta > maxdelta) | (delta < -maxdelta),
              "delta"] = hyper_params.get("maxdelta_replace", math.nan)

    if hyper_params.get("delta_window", 1) > 0:
        frame["delta"] = (frame["delta"].rolling(
            window=hyper_params["delta_window"], min_periods=1).mean())

    print('delta33', frame['delta'])
    win = hyper_params.get("rolling_window")
    if win > 1:
        # Compute endpoint deltas directly so we have more data points to
        # work with (fewer will get filtered out by the NaN filter).

        # frame['delta'] = (frame['sgv'] - frame['sgv'].shift(win)) / (win+1)
        # frame['ca'] = frame['ca'].rolling(window=win).mean()
        # frame['ia'] = frame['ia'].rolling(window=win).mean()

        frame = frame.rolling(window=win).mean()

    rows = (np.isfinite(frame["delta"])
            & np.isfinite(frame["carb"])
            & np.isfinite(frame["insulin"]))
    frame = frame[rows]
    print('finite', frame)
    insulin_quantile = frame["insulin"].quantile(0.90)
    print('iq', insulin_quantile)
    # Filter carb and insulin outliers.
    # frame = frame[(frame["insulin"] > 0) & (frame["insulin"] <= insulin_quantile)]
    # print('filter insulin', frame)
    #        (frame["insulin"] >= frame["insulin"].quantile(0.05))
    #        & (frame["insulin"] <= frame["insulin"].quantile(0.85))
    #    ]
    carb_quantile = frame[frame["carb"] > 0.0]["carb"].quantile(0.90)
    print('cq', carb_quantile)
    #frame = frame[frame["carb"] <= carb_quantile]

    return frame
예제 #16
0
 def log_probability(self, theta, x, y):
     
     lp = self.log_prior(theta)
     
     if not np.isfinite(lp):
         return -np.inf
     
     return lp + self.log_likelihood(theta, x, y)
def molecular_eval_norm(t,
                        mag,
                        w,
                        tau,
                        phi=None,
                        L=128.0,
                        norm_method='analytic',
                        verbose=0,
                        **kwargs):
    """
    Nearly the same as for atoms, but we no longer broadcast generally.
    One molecule, many time steps.
    """
    # verbose = kwargs.get('verbose', 0)
    mol_norm = molecular_mag(t,
                             mag,
                             w,
                             tau,
                             phi=phi,
                             L=L,
                             norm_method=norm_method,
                             verbose=verbose,
                             **kwargs)
    if np.any(mol_norm <= 0.0) and verbose > 1:
        # Null molecules should be removed before we get to this stage
        # but occasionally my logic misses them
        warnings.warn("magnitude of mol norm vanished {}".format(
            (mag, w, tau, phi)))
        mol_norm = np.maximum(mol_norm, 1e-12)

    mol_ev = molecular_eval(t, mag, w, tau, phi=None, L=128.0, **kwargs)
    if not np.all(np.isfinite(mol_ev)) and verbose >= 1:
        warnings.warn("raw molecule exploded {} giving \n{}".format(
            [mag, w, tau, phi],
            mol_ev,
        ))

    normed_eval = mol_ev / mol_norm

    if not np.all(np.isfinite(normed_eval)):
        warnings.warn("raw molecule exploded {} giving \n{}".format(
            [mag, w, tau, phi],
            normed_eval,
        ))

    return normed_eval
예제 #18
0
 def log_transition_matrix(self):
     Ps_dist = np.sum((self.ell[None, :, :] - self.ell[:, None, :])**2,
                      axis=2)
     log_Ps = -Ps_dist / self.L
     log_Ps += np.diag(self.log_p)
     assert np.all(np.isfinite(log_Ps))
     # Normalize and return
     return log_Ps - logsumexp(log_Ps, axis=1, keepdims=True)
예제 #19
0
def logsumexp(a, axis=None, keepdims=False):
    """Modified from scipy :
    Compute the log of the sum of exponentials of input elements.
    Parameters
    ----------
    a : array_like
        Input array.
    axis : None or int or tuple of ints, optional
        Axis or axes over which the sum is taken. By default `axis` is None,
        and all elements are summed.
        .. versionadded:: 0.11.0
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in the
        result as dimensions with size one. With this option, the result
        will broadcast correctly against the original array.
        .. versionadded:: 0.15.0
    Returns
    -------
    res : ndarray
        The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
        more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
        is returned.
    sgn : ndarray
        If return_sign is True, this will be an array of floating-point
        numbers matching res and +1, 0, or -1 depending on the sign
        of the result. If False, only one result is returned.
    """

    a_max = np.amax(a, axis=axis, keepdims=True)

    # Cutting the max if infinite
    a_max = np.where(~np.isfinite(a_max), 0, a_max)
    assert np.sum(~np.isfinite(a_max)) == 0

    tmp = np.exp(a - a_max)

    # suppress warnings about log of zero
    with np.errstate(divide='ignore'):
        s = np.sum(tmp, axis=axis, keepdims=keepdims)
        out = np.log(s)

    if not keepdims:
        a_max = np.squeeze(a_max, axis=axis)
    out += a_max

    return out
예제 #20
0
 def _parameter_initialiser(self, x, c=None, n=None, offset=False):
     # x, c, n = xcn_handler(x, c, n)
     # c = (c == 0).astype(np.int64)
     rate = 1. / x[np.isfinite(x)].mean()
     if offset:
         return np.min(x) - (np.max(x) - np.min(x)) / 10., rate
     else:
         return np.array([rate])
예제 #21
0
파일: preprocessing.py 프로젝트: zhoupc/ssm
def standardize(data, mask):

    data[~mask] = np.nan
    m = np.nanmean(data, axis=0)
    s = np.nanstd(data, axis=0)
    s[~np.any(mask, axis=0)] = 1
    y = (data - m) / s
    assert np.all(np.isfinite(y))
    return y
예제 #22
0
def log_prob(params, fit_y, gp, logperiod):

    gp.set_parameter_vector(params)
    p_current = gp.get_parameter_dict()['kernel:terms[2]:log_P']

    lp = gp.log_prior() + additional_prior(params, p_current, logperiod)
    if not np.isfinite(lp):
        return -np.inf
    return lp + gp.log_likelihood(fit_y)
예제 #23
0
def lnlike(p, x, y, gp):
    ln_a = p[0]
    ln_b = p[1]
    p0 = np.array([ln_a, ln_b])
    # update kernel parameters:
    gp.set_parameter_vector(p0)
    # calculate the likelihood:
    ll = gp.log_likelihood(y, quiet=True)
    # return
    return ll if np.isfinite(ll) else 1e25
예제 #24
0
    def __init__(self, X):
        """
        :param X: n x d numpy array for dataset X
        """
        self.X = X

        if not np.all(np.isfinite(X)):
            print 'X:'
            print util.fullprint(X)
            raise ValueError('Not all elements in X are finite.')
예제 #25
0
파일: mse.py 프로젝트: derrynknife/SurPyval
def mse(model):
    """
    MSE: Mean Square Error
    This is simply fitting the curve to the best estimate from a non-parametric
    estimate.

    This is slightly different in that it fits it to untransformed data on
    the x and y axis. The MPP method fits the curve to the transformed data.
    This is simply fitting a the CDF sigmoid to the nonparametric estimate.
    """
    dist = model.dist
    x, c, n, t = (model.data['x'], model.data['c'], model.data['n'],
                  model.data['t'])

    const = model.fitting_info['const']
    inv_trans = model.fitting_info['inv_trans']
    init = model.fitting_info['init']

    if (-1 in c) or (2 in c):
        out = nonp.turnbull(x, c, n, t, estimator='Fleming-Harrington')
    else:
        out = nonp.fleming_harrington(x, c, n, t)

    F = 1 - out['R']
    mask = np.isfinite(out['x'])
    F = F[mask]
    x = out['x'][mask]

    jac = jacobian(mse_fun)
    hess = hessian(mse_fun)

    old_err_state = np.seterr(all='ignore')

    res = minimize(mse_fun,
                   init,
                   method='Newton-CG',
                   jac=jac,
                   hess=hess,
                   args=(dist, x, F, inv_trans, const))

    if (res.success is False) or (np.isnan(res.x).any()):
        res = minimize(mse_fun,
                       init,
                       method='BFGS',
                       jac=jac,
                       args=(dist, x, F, inv_trans, const))

    if (res.success is False) or (np.isnan(res.x).any()):
        res = minimize(mse_fun, init, args=(dist, x, F, inv_trans, const))

    results = {}
    results['res'] = res
    results['params'] = inv_trans(const(res.x))
    np.seterr(**old_err_state)
    return results
예제 #26
0
    def check_parameters(self):
        """Check that all parameters have finite elements

        Raises
        ------
        `ArithmeticError` when non-finite elements are present
        """
        for k, p in enumerate(self._parameters):
            if not np.isfinite(p).all():
                msg = "Component {} Parameter {} is not finite:\n{}".format(
                    self, k, p)
                raise ArithmeticError(msg)
예제 #27
0
    def _log_prob_noderivatives(self, x):
        """ Computes the log-probability of an action $\mathbf u$ without computing derivatives.

        This is here only to facilitate unit testing of the `.log_prob` method by comparison against `autograd`.
        """
        # Compute logits
        self.logits  = self.inverse_softmax_temp*x

        # Compute log-probability of actions
        LSE = fu.logsumexp(self.logits)
        if not np.isfinite(LSE): LSE = 0.
        return self.logits - LSE
예제 #28
0
    def log_prob(self, x):
        """ Computes the log-probability of an action $\mathbf u$

        $$
        \log p(\mathbf u|\mathbf v, \mathbf u_{t-1}) = \\big(\\beta \mathbf v + \\beta^\\rho \mathbf u_{t-1}) - \log \sum_{v_i} e^{\\beta \mathbf v_i + \\beta^\\rho u_{t-1}^{(i)}}
        $$

        Arguments:

            x: State vector of type `ndarray((nactions,))`

        Returns:

            Scalar log-probability
        """
        # Compute logits
        Bx  = self.inverse_softmax_temp*x
        stickiness = self.perseveration*self.a_last
        self.logits = Bx + stickiness

        # Hessians
        HB, Hp, HBp, Hx, _ = hess.log_stickysoftmax(self.inverse_softmax_temp,
                                                    self.perseveration,
                                                    x,
                                                    self.a_last)
        self.hess_logprob['inverse_softmax_temp'] = HB
        self.hess_logprob['perseveration'] = Hp
        self.hess_logprob['action_values'] = Hx
        self.hess_logprob['inverse_softmax_temp_perseveration'] = HBp

        # Derivatives
        #  Grad LSE wrt Logits
        Dlse = grad.logsumexp(self.logits)

        # Grad logprob wrt logits
        self.d_logprob['logits'] = np.eye(x.size) - Dlse

        #  Partial derivative with respect to inverse softmax temp
        self.d_logits['inverse_softmax_temp'] = x
        self.d_logits['perseveration'] = self.a_last
        self.d_logprob['inverse_softmax_temp'] = x - np.dot(Dlse, x)
        self.d_logprob['perseveration'] = self.a_last - np.dot(Dlse, self.a_last)

        # Gradient with respect to x
        B = np.eye(x.size)*self.inverse_softmax_temp
        Dlsetile = np.tile(self.inverse_softmax_temp*Dlse, [x.size, 1])
        self.d_logprob['action_values'] = B - Dlsetile

        LSE = fu.logsumexp(self.logits)
        if not np.isfinite(LSE): LSE = 0.
        return self.logits - LSE
 def multi_objective(rates):
     """
     normalised inner product for each rate
     """
     molecules = [molecular_scale(
         code_coef,
         1,
         rate,
     ) for rate in rates]
     normecules = np.array([
         molecular_eval_norm(t,
                             *molecule,
                             norm_method=norm_method,
                             verbose=verbose) for molecule in molecules
     ])
     if not np.all(np.isfinite(normecules)) and verbose >= 1:
         exploded = np.isfinite(normecules.sum(1))
         warnings.warn(
             "{} normed molecules {} exploded with\n{} at rates\n{}".format(
                 np.sum(exploded), normecules.shape, code_coef,
                 rates[exploded]))
     obj = np.array([np.dot(normecule, target) for normecule in normecules])
     return np.nan_to_num(obj)
예제 #30
0
def jitchol(A, maxtries=5):
    diagA = np.diag(A)
    if np.any(diagA <= 0.):
        raise np.linalg.LinAlgError("not pd: non-positive diagonal elements")
    jitter = diagA.mean() * 1e-6
    num_tries = 1
    while num_tries <= maxtries and np.isfinite(jitter):
        try:
            L = np.linalg.cholesky(A + np.eye(A.shape[0]) * jitter, lower=True)
            return L
        except:
            jitter *= 10
        finally:
            num_tries += 1
    raise np.linalg.LinAlgError("not positive definite, even with jitter.")
예제 #31
0
def fit_gaussian_draw(X, J, seed=28, reg=1e-7, eig_pow=1.0):
    """
    Fit a multivariate normal to the data X (n x d) and draw J points 
    from the fit. 
    - reg: regularizer to use with the covariance matrix
    - eig_pow: raise eigenvalues of the covariance matrix to this power to construct 
        a new covariance matrix before drawing samples. Useful to shrink the spread 
        of the variance.
    """
    with NumpySeedContext(seed=seed):
        d = X.shape[1]
        mean_x = np.mean(X, 0)
        cov_x = np.cov(X.T)
        if d==1:
            cov_x = np.array([[cov_x]])
        [evals, evecs] = np.linalg.eig(cov_x)
        evals = np.maximum(0, np.real(evals))
        assert np.all(np.isfinite(evals))
        evecs = np.real(evecs)
        shrunk_cov = evecs.dot(np.diag(evals**eig_pow)).dot(evecs.T) + reg*np.eye(d)
        V = np.random.multivariate_normal(mean_x, shrunk_cov, J)
    return V
예제 #32
0
파일: synth.py 프로젝트: aasensio/DNHazel
    def compute_rotated_map(self, rotation):
        """
        Compute stellar maps projected on the plane of the sky for a given rotation of the star
        Args:
            rotation (float) : rotation around the star in degrees given as [longitude, latitude] in degrees
        
        Returns:
            pixel_unique (int) : vector with the "active" healpix pixels
            pixel_map (int) : map showing the healpix pixel projected on the plane of the sky
            mu_pixel (float): map of the astrocentric angle for each pixel on the plane of the sky (zero for pixels not in the star)
            T_pixel (float): map of temperatures for each pixel on the plane of the sky
        """
        mu_pixel = np.zeros_like(self.mu_angle)
        T_pixel = np.zeros_like(self.mu_angle)

# Get the projection of the healpix pixel indices on the plane of the sky
        pixel_map = self.projector.projmap(self.indices, self.f_vec2pix, rot=rotation)[:,0:int(self.npix/2)]

# Get the unique elements in the vector
        pixel_unique = np.unique(pixel_map)
        
# Now loop over all unique pixels, filling up the array of the projected map with the mu and temeperature values
        for j in range(len(pixel_unique)):
            ind = np.where(pixel_map == pixel_unique[j])            

            if (np.all(np.isfinite(self.mu_angle[ind[0],ind[1]]))):
                if (self.mu_angle[ind[0],ind[1]].size == 0):
                    value = 0.0
                else:                    
                    value = np.nanmean(self.mu_angle[ind[0],ind[1]])
                    mu_pixel[ind[0],ind[1]] = value

                    T_pixel[ind[0],ind[1]] = self.temperature_map[int(pixel_unique[j])]
            else:
                mu_pixel[ind[0],ind[1]] = 0.0
                T_pixel[ind[0],ind[1]] = 0.0

        return pixel_unique, pixel_map, mu_pixel, T_pixel
예제 #33
0
파일: synth.py 프로젝트: aasensio/DNHazel
    def precompute_rotation_maps(self, rotations=None):
        """
        Compute the averaged spectrum on the star for a given temperature map and for a given rotation
        Args:
            rotations (float) : [N_phases x 2] giving [longitude, latitude] in degrees for each phase
        
        Returns:
            None
        """
        if (rotations is None):
            print("Use some angles for the rotations")
            return

        self.n_phases = rotations.shape[0]

        self.avg_mu = [None] * self.n_phases
        self.avg_v = [None] * self.n_phases
        self.velocity = [None] * self.n_phases
        self.n_pixel_unique = [None] * self.n_phases
        self.n_pixels = [None] * self.n_phases
        self.pixel_unique = [None] * self.n_phases

        for loop in range(self.n_phases):
            mu_pixel = np.zeros_like(self.mu_angle)
            v_pixel = np.zeros_like(self.vel_projection)
        
            pixel_map = self.projector.projmap(self.indices, self.f_vec2pix, rot=rotations[loop,:])[:,0:int(self.npix/2)]
            pixel_unique = np.unique(pixel_map[np.isfinite(pixel_map)])

            for j in range(len(pixel_unique)):
                ind = np.where(pixel_map == pixel_unique[j])

                if (np.all(np.isfinite(self.mu_angle[ind[0],ind[1]]))):
                    if (self.mu_angle[ind[0],ind[1]].size == 0):
                        mu_pixel[ind[0],ind[1]] = 0.0
                        v_pixel[ind[0],ind[1]] = 0.0
                    else:                    
                        
                        if (self.clv):
                            value = np.nanmean(self.mu_angle[ind[0],ind[1]])
                        else:
                            value = 1.0

                        mu_pixel[ind[0],ind[1]] = value

                        value = np.nanmean(self.vel_projection[ind[0],ind[1]])
                        v_pixel[ind[0],ind[1]] = value
                else:
                    mu_pixel[ind[0],ind[1]] = 0.0
                    v_pixel[ind[0],ind[1]] = 0.0

            self.n_pixel_unique[loop] = len(pixel_unique)
            self.avg_mu[loop] = np.zeros(self.n_pixel_unique[loop])
            self.avg_v[loop] = np.zeros(self.n_pixel_unique[loop])
            self.velocity[loop] = np.zeros(self.n_pixel_unique[loop])
            self.n_pixels[loop] = np.zeros(self.n_pixel_unique[loop], dtype='int')
            self.pixel_unique[loop] = pixel_unique.astype('int')

            for i in range(len(pixel_unique)):
                ind = np.where(pixel_map == pixel_unique[i])
                self.n_pixels[loop][i] = len(ind[0])
                self.avg_mu[loop][i] = np.unique(mu_pixel[ind[0], ind[1]])
                self.avg_v[loop][i] = np.unique(v_pixel[ind[0], ind[1]])            
                self.velocity[loop][i] = self.avg_mu[loop][i] * self.avg_v[loop][i]