def lower_half(mat): # Takes the lower half of the matrix, and half the diagonal. # Necessary since numpy only uses lower half of covariance matrix. if len(mat.shape) == 2: return 0.5 * (np.tril(mat) + np.triu(mat, 1).T) elif len(mat.shape) == 3: return 0.5 * (np.tril(mat) + np.swapaxes(np.triu(mat, 1), 1,2)) else: raise ArithmeticError
def unpack_params(params): """Unpacks parameter vector into the proportions, means and covariances of each mixture component. The covariance matrices are parametrized by their Cholesky decompositions.""" log_proportions = parser.get(params, 'log proportions') normalized_log_proportions = log_proportions - logsumexp(log_proportions) means = parser.get(params, 'means') lower_tris = np.tril(parser.get(params, 'lower triangles'), k=-1) diag_chols = np.exp( parser.get(params, 'log diagonals')) chols = [] for lower_tri, diag in zip(lower_tris, diag_chols): chols.append(np.expand_dims(lower_tri + np.diag(diag), 0)) chols = np.concatenate(chols, axis=0) return normalized_log_proportions, means, chols