def add_model(self, model, x_train, y_train, x_test, y_test): """add one model while will be trained to history list""" model.compile(loss=categorical_crossentropy, optimizer=Adadelta(), metrics=['accuracy']) if self.verbose: model.summary() ModelTrainer(model, x_train, y_train, x_test, y_test, self.verbose).train_model() loss, accuracy = model.evaluate(x_test, y_test, verbose=self.verbose) model.save(os.path.join(self.path, str(self.model_count) + '.h5')) self.history.append({ 'model_id': self.model_count, 'loss': loss, 'accuracy': accuracy }) self.history_configs.append(extract_config(model)) self.model_count += 1 pickle.dump(self, open(os.path.join(self.path, 'searcher'), 'wb'))
def add_model(self, model, x_train, y_train, x_test, y_test): """add one model while will be trained to history list Returns: History object. """ loss, accuracy = ModelTrainer(model, x_train, y_train, x_test, y_test, False).train_model(**self.trainer_args) accuracy += 0.005 * len( Graph(model, False).extract_descriptor().skip_connections) accuracy = min(accuracy, 1) model.save(os.path.join(self.path, str(self.model_count) + '.h5')) plot_model(model, to_file=os.path.join(self.path, str(self.model_count) + '.png'), show_shapes=True) model_id = self.model_count ret = {'model_id': model_id, 'loss': loss, 'accuracy': accuracy} self.history.append(ret) self.history_configs.append(extract_config(model)) self.model_count += 1 self.descriptors[Graph(model, False).extract_descriptor()] = True # Update best_model text file if model_id == self.get_best_model_id(): file = open(os.path.join(self.path, 'best_model.txt'), 'w') file.write('best model: ' + str(model_id)) file.close() if self.verbose: print('Model ID:', model_id) print('Loss:', loss) print('Accuracy', accuracy) return ret
def run(): # Training parameters batch_size = 32 # orig paper trained all networks with batch_size=128 epochs = 200 data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # Model parameter # ---------------------------------------------------------------------------- # | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch # Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti # |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2) # ---------------------------------------------------------------------------- # ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---) # ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA) # ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA) # ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100) # ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180) # ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---) # ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---) # --------------------------------------------------------------------------- n = 3 # Model version # Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2) version = 1 # Computed depth from supplied model parameter n if version == 1: depth = n * 6 + 2 elif version == 2: depth = n * 9 + 2 # Model name, depth and version model_type = 'ResNet%dv%d' % (depth, version) # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Input image dimensions. input_shape = x_train.shape[1:] # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if version == 2: model = resnet_v2(input_shape=input_shape, depth=depth) else: model = resnet_v1(input_shape=input_shape, depth=depth) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=lr_schedule(0)), metrics=['accuracy']) model.summary() print(model_type) # Prepare model model saving directory. save_dir = os.path.join(os.getcwd(), 'saved_models') model_name = 'cifar10_%s_model.{epoch:03d}.h5' % model_type if not os.path.isdir(save_dir): os.makedirs(save_dir) filepath = os.path.join(save_dir, model_name) # Prepare callbacks for model saving and for learning rate adjustment. checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbose=1, save_best_only=True) lr_scheduler = LearningRateScheduler(lr_schedule) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) callbacks = [checkpoint, lr_reducer, lr_scheduler] # # Run training, with or without data augmentation. # if not data_augmentation: # print('Not using data augmentation.') # model.fit(x_train, y_train, # batch_size=batch_size, # epochs=epochs, # validation_data=(x_test, y_test), # shuffle=True, # callbacks=callbacks) # else: # print('Using real-time data augmentation.') # # This will do preprocessing and realtime data augmentation: # datagen = ImageDataGenerator( # # set input mean to 0 over the dataset # featurewise_center=False, # # set each sample mean to 0 # samplewise_center=False, # # divide inputs by std of dataset # featurewise_std_normalization=False, # # divide each input by its std # samplewise_std_normalization=False, # # apply ZCA whitening # zca_whitening=False, # # randomly rotate images in the range (deg 0 to 180) # rotation_range=0, # # randomly shift images horizontally # width_shift_range=0.1, # # randomly shift images vertically # height_shift_range=0.1, # # randomly flip images # horizontal_flip=True, # # randomly flip images # vertical_flip=False) # # # Compute quantities required for featurewise normalization # # (std, mean, and principal components if ZCA whitening is applied). # datagen.fit(x_train) # # # Fit the model on the batches generated by datagen.flow(). # model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), # validation_data=(x_test, y_test), # epochs=epochs, verbose=1, workers=4, # callbacks=callbacks) ModelTrainer(model, x_train, y_train, x_test, y_test, False).train_model() # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1])
from keras.datasets import cifar10 from autokeras.generator import DefaultClassifierGenerator from autokeras.net_transformer import default_transform from autokeras.preprocessor import OneHotEncoder from autokeras.utils import ModelTrainer if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = cifar10.load_data() print('Start Encoding') encoder = OneHotEncoder() encoder.fit(y_train) y_train = encoder.transform(y_train) y_test = encoder.transform(y_test) print('Start Generating') graphs = default_transform( DefaultClassifierGenerator(10, x_train.shape[1:]).generate()) keras_model = graphs[0].produce_model() print('Start Training') ModelTrainer(keras_model, x_train, y_train, x_test, y_test, True).train_model(max_no_improvement_num=100, batch_size=128) print(keras_model.evaluate(x_test, y_test, True))
print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add( Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) ModelTrainer(model, x_train, y_train, x_test, y_test, True).train_model() # model.fit(x_train, y_train, # batch_size=batch_size, # epochs=epochs, # verbose=1, # validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
def test_model_trainer(): model = DefaultClassifierGenerator(3, (28, 28, 3)).generate().produce_model() train_data, test_data = get_processed_data() ModelTrainer(model, train_data, test_data, Accuracy, False).train_model(max_iter_num=3)
from autokeras.preprocessor import OneHotEncoder, DataTransformer from autokeras.utils import ModelTrainer if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = cifar10.load_data() print('Start Encoding') encoder = OneHotEncoder() encoder.fit(y_train) y_train = encoder.transform(y_train) y_test = encoder.transform(y_test) data_transformer = DataTransformer(x_train, augment=True) train_data = data_transformer.transform_train(x_train, y_train) test_data = data_transformer.transform_test(x_test, y_test) print('Start Generating') graphs = [DefaultClassifierGenerator(10, x_train.shape[1:]).generate()] keras_model = graphs[0].produce_model() print('Start Training') loss, acc = ModelTrainer(keras_model, train_data, test_data, True).train_model(max_no_improvement_num=100, batch_size=128) print(loss, acc)
def test_model_trainer_classification(): model = CnnGenerator(3, (28, 28, 3)).generate().produce_model() train_data, test_data = get_classification_dataloaders() ModelTrainer(model, train_data, test_data, Accuracy, classification_loss, False).train_model(max_iter_num=3)
def test_model_trainer_regression(): model = CnnGenerator(1, (28, 28, 3)).generate().produce_model() train_data, test_data = get_regression_dataloaders() ModelTrainer(model, train_data, test_data, MSE, regression_loss, False).train_model(max_iter_num=3)