def test_AutoMLClassifier(get_data): data = get_data test_model = AutoMLClassifier(databunch=data, random_state=RANDOM_SEED) predict_test, predict_train = test_model.opt(timeout=1500, verbose=0,) assert predict_test is not None score = sklearn.metrics.roc_auc_score(data.y_test, predict_test) assert score is not None assert score >= 0.8
X_train, y_train = X.iloc[train_idx], y.iloc[train_idx] X_test, y_test = X.iloc[test_idx], y.iloc[test_idx] #print(DATASET_NAME, X_train.shape, X_test.shape) # Auto_ml START_EXPERIMENT = time.time() model = AutoMLClassifier(X_train, y_train, X_test, #cat_encoder_names=['OneHotEncoder', 'FrequencyEncoder'], cat_features=cat_features, random_state=RANDOM_SEED, verbose=1) time.sleep(0.5) y_test_predict_proba, predict_train = model.opt(timeout=TIME_LIMIT, verbose=2) #y_test_predict_proba, _ = model.fit_predict() #y_test_predict = automl.predict(X_test) print('*'*75) print('AUC: ', round(roc_auc_score(y_test, y_test_predict_proba),4)) print('AUC mean models: ', round(roc_auc_score(y_test, model.stack_models_predicts['predict_test'].mean()),4)) print('Model_0 FullX: ', round(roc_auc_score(y_test, model.predicts_model_0_full_x['predict_test'].mean()),4)) print('Model_1 FullX: ', round(roc_auc_score(y_test, model.predicts_model_1_full_x['predict_test'].mean()),4)) print('-'*75) #print('Mean Test AUC: ', round(sklearn.metrics.roc_auc_score(y_test, model._data.X_test_predicts.T.mean()),4)) END_EXPERIMENT = time.time() #preds = pd.DataFrame(predictions)