###############################################################################
import numpy as np
param_range = np.linspace(40e-6, 200e-6, 30)

###############################################################################
# Next, we can use :class:`autoreject.GlobalAutoReject` to find global
# (i.e., for all channels) peak-to-peak thresholds. It is a class which
# follows a :mod:`scikit-learn`-like API. To compute the Root Mean Squared
# (RMSE) values at the candidate thresholds, we will use the function
# :func:`autoreject.validation_curve`.

###############################################################################
from autoreject import GlobalAutoReject, validation_curve

_, test_scores = validation_curve(
    GlobalAutoReject(), epochs, y=None,
    param_name="thresh", param_range=param_range, cv=5, n_jobs=1)

test_scores = -test_scores.mean(axis=1)
best_thresh = param_range[np.argmin(test_scores)]

###############################################################################
# Now let us plot the RMSE values against the candidate thresholds.

###############################################################################
import matplotlib.pyplot as plt
from autoreject import set_matplotlib_defaults
set_matplotlib_defaults(plt)

human_thresh = 80e-6
unit = r'$\mu$V'
예제 #2
0
import numpy as np  # noqa
param_range = np.linspace(40e-6, 200e-6, 30)

###############################################################################
# Next, we can use :func:`autoreject.validation_curve` to compute the Root Mean
# Squared (RMSE) values at the candidate thresholds. Under the hood, this is
# using  :class:`autoreject._GlobalAutoReject` to find global (i.e., for all
# channels) peak-to-peak thresholds.

from autoreject import validation_curve  # noqa
from autoreject import get_rejection_threshold  # noqa

_, test_scores, param_range = validation_curve(epochs,
                                               param_range=param_range,
                                               cv=5,
                                               return_param_range=True,
                                               n_jobs=1)

test_scores = -test_scores.mean(axis=1)
best_thresh = param_range[np.argmin(test_scores)]

###############################################################################
# We can also get the best threshold more efficiently using Bayesian
# optimization
reject2 = get_rejection_threshold(epochs, random_state=0, cv=5)

###############################################################################
# Now let us plot the RMSE values against the candidate thresholds.

import matplotlib.pyplot as plt  # noqa
예제 #3
0
def test_autoreject():
    """Test basic _AutoReject functionality."""
    event_id = None
    tmin, tmax = -0.2, 0.5
    events = mne.find_events(raw)

    ##########################################################################
    # picking epochs
    include = [u'EEG %03d' % i for i in range(1, 45, 3)]
    picks = mne.pick_types(raw.info,
                           meg=False,
                           eeg=False,
                           stim=False,
                           eog=True,
                           include=include,
                           exclude=[])
    epochs = mne.Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        picks=picks,
                        baseline=(None, 0),
                        decim=10,
                        reject=None,
                        preload=False)[:10]

    ar = _AutoReject()
    assert_raises(ValueError, ar.fit, epochs)
    epochs.load_data()

    ar.fit(epochs)
    assert_true(len(ar.picks_) == len(picks) - 1)

    # epochs with no picks.
    epochs = mne.Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        baseline=(None, 0),
                        decim=10,
                        reject=None,
                        preload=True)[:20]
    # let's drop some channels to speed up
    pre_picks = mne.pick_types(epochs.info, meg=True, eeg=True)
    pre_picks = np.r_[
        mne.pick_types(epochs.info, meg='mag', eeg=False)[::15],
        mne.pick_types(epochs.info, meg='grad', eeg=False)[::60],
        mne.pick_types(epochs.info, meg=False, eeg=True)[::16],
        mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)]
    pick_ch_names = [epochs.ch_names[pp] for pp in pre_picks]
    bad_ch_names = [
        epochs.ch_names[ix] for ix in range(len(epochs.ch_names))
        if ix not in pre_picks
    ]
    epochs_with_bads = epochs.copy()
    epochs_with_bads.info['bads'] = bad_ch_names
    epochs.pick_channels(pick_ch_names)

    epochs_fit = epochs[:12]  # make sure to use different size of epochs
    epochs_new = epochs[12:]
    epochs_with_bads_fit = epochs_with_bads[:12]

    X = epochs_fit.get_data()
    n_epochs, n_channels, n_times = X.shape
    X = X.reshape(n_epochs, -1)

    ar = _GlobalAutoReject()
    assert_raises(ValueError, ar.fit, X)
    ar = _GlobalAutoReject(n_channels=n_channels)
    assert_raises(ValueError, ar.fit, X)
    ar = _GlobalAutoReject(n_times=n_times)
    assert_raises(ValueError, ar.fit, X)
    ar_global = _GlobalAutoReject(n_channels=n_channels,
                                  n_times=n_times,
                                  thresh=40e-6)
    ar_global.fit(X)

    param_range = np.linspace(40e-6, 200e-6, 10)

    train_scores, test_scores = \
        validation_curve(epochs_fit, param_range=param_range)
    assert len(train_scores) == len(test_scores)

    train_scores, test_scores, param_range = \
        validation_curve(epochs_fit, return_param_range=True)
    assert len(train_scores) == len(test_scores) == len(param_range)

    assert_raises(ValueError, validation_curve, X, param_range=param_range)

    ##########################################################################
    # picking AutoReject

    picks = mne.pick_types(epochs.info,
                           meg='mag',
                           eeg=True,
                           stim=False,
                           eog=False,
                           include=[],
                           exclude=[])
    non_picks = mne.pick_types(epochs.info,
                               meg='grad',
                               eeg=False,
                               stim=False,
                               eog=False,
                               include=[],
                               exclude=[])
    ch_types = ['mag', 'eeg']

    ar = _AutoReject(picks=picks)  # XXX : why do we need this??

    ar = AutoReject(cv=3,
                    picks=picks,
                    random_state=42,
                    n_interpolate=[1, 2],
                    consensus=[0.5, 1])
    assert_raises(AttributeError, ar.fit, X)
    assert_raises(ValueError, ar.transform, X)
    assert_raises(ValueError, ar.transform, epochs)
    epochs_nochs = epochs_fit.copy()
    for ch in epochs_nochs.info['chs']:
        ch['loc'] = np.zeros(9)
    assert_raises(RuntimeError, ar.fit, epochs_nochs)
    ar2 = AutoReject(cv=3,
                     picks=picks,
                     random_state=42,
                     n_interpolate=[1, 2],
                     consensus=[0.5, 1],
                     verbose='blah')
    assert_raises(ValueError, ar2.fit, epochs_fit)

    ar.fit(epochs_fit)
    reject_log = ar.get_reject_log(epochs_fit)
    for ch_type in ch_types:
        # test that kappa & rho are selected
        assert_true(ar.n_interpolate_[ch_type] in ar.n_interpolate)
        assert_true(ar.consensus_[ch_type] in ar.consensus)

        assert_true(ar.n_interpolate_[ch_type] ==
                    ar.local_reject_[ch_type].n_interpolate_[ch_type])
        assert_true(ar.consensus_[ch_type] ==
                    ar.local_reject_[ch_type].consensus_[ch_type])

    # test complementarity of goods and bads
    assert_array_equal(len(reject_log.bad_epochs), len(epochs_fit))

    # test that transform does not change state of ar
    epochs_clean = ar.transform(epochs_fit)  # apply same data
    assert_true(repr(ar))
    assert_true(repr(ar.local_reject_))
    reject_log2 = ar.get_reject_log(epochs_fit)
    assert_array_equal(reject_log.labels, reject_log2.labels)
    assert_array_equal(reject_log.bad_epochs, reject_log2.bad_epochs)
    assert_array_equal(reject_log.ch_names, reject_log2.ch_names)

    epochs_new_clean = ar.transform(epochs_new)  # apply to new data

    reject_log_new = ar.get_reject_log(epochs_new)
    assert_array_equal(len(reject_log_new.bad_epochs), len(epochs_new))

    assert_true(len(reject_log_new.bad_epochs) != len(reject_log.bad_epochs))

    picks_by_type = _get_picks_by_type(epochs.info, ar.picks)
    # test correct entries in fix log
    assert_true(np.isnan(reject_log_new.labels[:, non_picks]).sum() > 0)
    assert_true(np.isnan(reject_log_new.labels[:, picks]).sum() == 0)
    assert_equal(reject_log_new.labels.shape,
                 (len(epochs_new), len(epochs_new.ch_names)))

    # test correct interpolations by type
    for ch_type, this_picks in picks_by_type:
        interp_counts = np.sum(reject_log_new.labels[:, this_picks] == 2,
                               axis=1)
        labels = reject_log_new.labels.copy()
        not_this_picks = np.setdiff1d(np.arange(labels.shape[1]), this_picks)
        labels[:, not_this_picks] = np.nan
        interp_channels = _get_interp_chs(labels, reject_log.ch_names,
                                          this_picks)
        assert_array_equal(interp_counts, [len(cc) for cc in interp_channels])

    is_same = epochs_new_clean.get_data() == epochs_new.get_data()
    if not np.isscalar(is_same):
        is_same = np.isscalar(is_same)
    assert_true(not is_same)

    # test that transform ignores bad channels
    epochs_with_bads_fit.pick_types(meg='mag', eeg=True, eog=True, exclude=[])
    ar_bads = AutoReject(cv=3,
                         random_state=42,
                         n_interpolate=[1, 2],
                         consensus=[0.5, 1])
    ar_bads.fit(epochs_with_bads_fit)
    epochs_with_bads_clean = ar_bads.transform(epochs_with_bads_fit)

    good_w_bads_ix = mne.pick_types(epochs_with_bads_clean.info,
                                    meg='mag',
                                    eeg=True,
                                    eog=True,
                                    exclude='bads')
    good_wo_bads_ix = mne.pick_types(epochs_clean.info,
                                     meg='mag',
                                     eeg=True,
                                     eog=True,
                                     exclude='bads')
    assert_array_equal(epochs_with_bads_clean.get_data()[:, good_w_bads_ix, :],
                       epochs_clean.get_data()[:, good_wo_bads_ix, :])

    bad_ix = [
        epochs_with_bads_clean.ch_names.index(ch)
        for ch in epochs_with_bads_clean.info['bads']
    ]
    epo_ix = ~ar_bads.get_reject_log(epochs_with_bads_fit).bad_epochs
    assert_array_equal(
        epochs_with_bads_clean.get_data()[:, bad_ix, :],
        epochs_with_bads_fit.get_data()[epo_ix, :, :][:, bad_ix, :])

    assert_equal(epochs_clean.ch_names, epochs_fit.ch_names)

    assert_true(isinstance(ar.threshes_, dict))
    assert_true(len(ar.picks) == len(picks))
    assert_true(len(ar.threshes_.keys()) == len(ar.picks))
    pick_eog = mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)[0]
    assert_true(epochs.ch_names[pick_eog] not in ar.threshes_.keys())
    assert_raises(
        IndexError, ar.transform,
        epochs.copy().pick_channels([epochs.ch_names[pp] for pp in picks[:3]]))

    epochs.load_data()
    assert_raises(ValueError, compute_thresholds, epochs, 'dfdfdf')
    index, ch_names = zip(*[(ii, epochs_fit.ch_names[pp])
                            for ii, pp in enumerate(picks)])
    threshes_a = compute_thresholds(epochs_fit,
                                    picks=picks,
                                    method='random_search')
    assert_equal(set(threshes_a.keys()), set(ch_names))
    threshes_b = compute_thresholds(epochs_fit,
                                    picks=picks,
                                    method='bayesian_optimization')
    assert_equal(set(threshes_b.keys()), set(ch_names))
예제 #4
0
                    picks=picks,
                    baseline=(None, 0),
                    reject=None,
                    verbose=False,
                    detrend=True)

param_range = np.linspace(400e-7, 200e-6, 30)

human_thresh = 80e-6
unit = r'$\mu$V'
scaling = 1e6

_, test_scores = validation_curve(GlobalAutoReject(),
                                  epochs,
                                  y=None,
                                  param_name="thresh",
                                  param_range=param_range,
                                  cv=5,
                                  n_jobs=1)

test_scores = -test_scores.mean(axis=1)
best_thresh = param_range[np.argmin(test_scores)]

matplotlib.style.use('ggplot')
fontsize = 17
params = {
    'axes.labelsize': fontsize + 2,
    'text.fontsize': fontsize,
    'legend.fontsize': fontsize,
    'xtick.labelsize': fontsize,
    'ytick.labelsize': fontsize
예제 #5
0
# Let us define a range of candidate thresholds which we would like to try.
# In this particular case, we try from :math:`40{\mu}V` to :math:`200{\mu}V`

import numpy as np  # noqa
param_range = np.linspace(40e-6, 200e-6, 30)

###############################################################################
# Next, we can use :class:`autoreject.GlobalAutoReject` to find global
# (i.e., for all channels) peak-to-peak thresholds. It is a class which
# follows a :mod:`scikit-learn`-like API. To compute the Root Mean Squared
# (RMSE) values at the candidate thresholds, we will use the function
# :func:`autoreject.validation_curve`.

from autoreject import validation_curve  # noqa

_, test_scores = validation_curve(
    epochs, y=None, param_name="thresh", param_range=param_range, cv=5)

test_scores = -test_scores.mean(axis=1)
best_thresh = param_range[np.argmin(test_scores)]

###############################################################################
# Now let us plot the RMSE values against the candidate thresholds.

import matplotlib.pyplot as plt  # noqa
from autoreject import set_matplotlib_defaults  # noqa
set_matplotlib_defaults(plt)

human_thresh = 80e-6
unit = r'$\mu$V'
scaling = 1e6