def test_autoreject(): """Test basic LocalAutoReject functionality.""" event_id = None tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) ########################################################################## # picking epochs include = [u'EEG %03d' % i for i in range(1, 45, 3)] picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, include=include, exclude=[]) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=10, reject=None, preload=False)[:10] ar = LocalAutoReject() assert_raises(ValueError, ar.fit, epochs) epochs.load_data() ar.fit(epochs) assert_true(len(ar.picks_) == len(picks) - 1) # epochs with no picks. epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), decim=10, reject=None, preload=True)[:20] # let's drop some channels to speed up pre_picks = mne.pick_types(epochs.info, meg=True, eeg=True) pre_picks = np.r_[ mne.pick_types(epochs.info, meg='mag', eeg=False)[::15], mne.pick_types(epochs.info, meg='grad', eeg=False)[::60], mne.pick_types(epochs.info, meg=False, eeg=True)[::16], mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)] pick_ch_names = [epochs.ch_names[pp] for pp in pre_picks] epochs.pick_channels(pick_ch_names) epochs_fit = epochs[:12] # make sure to use different size of epochs epochs_new = epochs[12:] X = epochs_fit.get_data() n_epochs, n_channels, n_times = X.shape X = X.reshape(n_epochs, -1) ar = GlobalAutoReject() assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_channels=n_channels) assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_times=n_times) assert_raises(ValueError, ar.fit, X) ar_global = GlobalAutoReject(n_channels=n_channels, n_times=n_times, thresh=40e-6) ar_global.fit(X) param_name = 'thresh' param_range = np.linspace(40e-6, 200e-6, 10) assert_raises(ValueError, validation_curve, ar_global, X, None, param_name, param_range) ########################################################################## # picking AutoReject picks = mne.pick_types(epochs.info, meg='mag', eeg=True, stim=False, eog=False, include=[], exclude=[]) non_picks = mne.pick_types(epochs.info, meg='grad', eeg=False, stim=False, eog=False, include=[], exclude=[]) ch_types = ['mag', 'eeg'] ar = LocalAutoReject(picks=picks) # XXX : why do we need this?? assert_raises(NotImplementedError, validation_curve, ar, epochs, None, param_name, param_range) thresh_func = partial(compute_thresholds, method='bayesian_optimization', random_state=42) ar = LocalAutoRejectCV(cv=3, picks=picks, thresh_func=thresh_func, n_interpolate=[1, 2], consensus=[0.5, 1]) assert_raises(AttributeError, ar.fit, X) assert_raises(ValueError, ar.transform, X) assert_raises(ValueError, ar.transform, epochs) ar.fit(epochs_fit) reject_log = ar.get_reject_log(epochs_fit) for ch_type in ch_types: # test that kappa & rho are selected assert_true(ar.n_interpolate_[ch_type] in ar.n_interpolate) assert_true(ar.consensus_[ch_type] in ar.consensus) assert_true(ar.n_interpolate_[ch_type] == ar.local_reject_[ch_type].n_interpolate_[ch_type]) assert_true(ar.consensus_[ch_type] == ar.local_reject_[ch_type].consensus_[ch_type]) # test complementarity of goods and bads assert_array_equal(len(reject_log.bad_epochs), len(epochs_fit)) # test that transform does not change state of ar epochs_clean = ar.transform(epochs_fit) # apply same data reject_log2 = ar.get_reject_log(epochs_fit) assert_array_equal(reject_log.labels, reject_log2.labels) assert_array_equal(reject_log.bad_epochs, reject_log2.bad_epochs) assert_array_equal(reject_log.ch_names, reject_log2.ch_names) epochs_new_clean = ar.transform(epochs_new) # apply to new data reject_log_new = ar.get_reject_log(epochs_new) assert_array_equal(len(reject_log_new.bad_epochs), len(epochs_new)) assert_true(len(reject_log_new.bad_epochs) != len(reject_log.bad_epochs)) picks_by_type = _get_picks_by_type(epochs.info, ar.picks) # test correct entries in fix log assert_true(np.isnan(reject_log_new.labels[:, non_picks]).sum() > 0) assert_true(np.isnan(reject_log_new.labels[:, picks]).sum() == 0) assert_equal(reject_log_new.labels.shape, (len(epochs_new), len(epochs_new.ch_names))) # test correct interpolations by type for ch_type, this_picks in picks_by_type: interp_counts = np.sum(reject_log_new.labels[:, this_picks] == 2, axis=1) labels = reject_log_new.labels.copy() not_this_picks = np.setdiff1d(np.arange(labels.shape[1]), this_picks) labels[:, not_this_picks] = np.nan interp_channels = _get_interp_chs(labels, reject_log.ch_names, this_picks) assert_array_equal(interp_counts, [len(cc) for cc in interp_channels]) is_same = epochs_new_clean.get_data() == epochs_new.get_data() if not np.isscalar(is_same): is_same = np.isscalar(is_same) assert_true(not is_same) assert_equal(epochs_clean.ch_names, epochs_fit.ch_names) assert_true(isinstance(ar.threshes_, dict)) assert_true(len(ar.picks) == len(picks)) assert_true(len(ar.threshes_.keys()) == len(ar.picks)) pick_eog = mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)[0] assert_true(epochs.ch_names[pick_eog] not in ar.threshes_.keys()) assert_raises( IndexError, ar.transform, epochs.copy().pick_channels([epochs.ch_names[pp] for pp in picks[:3]])) epochs.load_data() assert_raises(ValueError, compute_thresholds, epochs, 'dfdfdf') index, ch_names = zip(*[(ii, epochs_fit.ch_names[pp]) for ii, pp in enumerate(picks)]) threshes_a = compute_thresholds(epochs_fit, picks=picks, method='random_search') assert_equal(set(threshes_a.keys()), set(ch_names)) threshes_b = compute_thresholds(epochs_fit, picks=picks, method='bayesian_optimization') assert_equal(set(threshes_b.keys()), set(ch_names))
def test_autoreject(): """Test basic LocalAutoReject functionality.""" event_id = None tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) ########################################################################## # picking epochs include = [u'EEG %03d' % i for i in range(1, 45, 3)] picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, include=include, exclude=[]) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=10, reject=None, preload=False)[:10] ar = LocalAutoReject() assert_raises(ValueError, ar.fit, epochs) epochs.load_data() ar.fit(epochs) assert_true(len(ar.picks) == len(picks) - 1) # epochs with no picks. epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), decim=10, reject=None, preload=True)[:20] # let's drop some channels to speed up pre_picks = mne.pick_types(epochs.info, meg=True, eeg=True) pre_picks = np.r_[ mne.pick_types(epochs.info, meg='mag', eeg=False)[::15], mne.pick_types(epochs.info, meg='grad', eeg=False)[::60], mne.pick_types(epochs.info, meg=False, eeg=True)[::16], mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)] pick_ch_names = [epochs.ch_names[pp] for pp in pre_picks] epochs.pick_channels(pick_ch_names) epochs_fit = epochs[:10] epochs_new = epochs[10:] X = epochs_fit.get_data() n_epochs, n_channels, n_times = X.shape X = X.reshape(n_epochs, -1) ar = GlobalAutoReject() assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_channels=n_channels) assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_times=n_times) assert_raises(ValueError, ar.fit, X) ar_global = GlobalAutoReject(n_channels=n_channels, n_times=n_times, thresh=40e-6) ar_global.fit(X) param_name = 'thresh' param_range = np.linspace(40e-6, 200e-6, 10) assert_raises(ValueError, validation_curve, ar_global, X, None, param_name, param_range) ########################################################################## # picking AutoReject picks = mne.pick_types(epochs.info, meg='mag', eeg=True, stim=False, eog=False, include=[], exclude=[]) ch_types = ['mag', 'eeg'] ar = LocalAutoReject(picks=picks) assert_raises(NotImplementedError, validation_curve, ar, epochs, None, param_name, param_range) thresh_func = partial(compute_thresholds, method='bayesian_optimization', random_state=42) ar = LocalAutoRejectCV(cv=3, picks=picks, thresh_func=thresh_func, n_interpolates=[1, 2], consensus_percs=[0.5, 1]) assert_raises(AttributeError, ar.fit, X) assert_raises(ValueError, ar.transform, X) assert_raises(ValueError, ar.transform, epochs) ar.fit(epochs_fit) fix_log = ar.fix_log bad_epochs_idx = ar.local_reject_.bad_epochs_idx_ good_epochs_idx = ar.local_reject_.good_epochs_idx_ for ch_type in ch_types: # test that kappa & rho are selected assert_true(ar.n_interpolate_[ch_type] in ar.n_interpolates) assert_true(ar.consensus_perc_[ch_type] in ar.consensus_percs) # test that local autoreject is synced with AR-CV instance assert_equal(ar.n_interpolate_[ch_type], ar.local_reject_.n_interpolate[ch_type]) assert_equal(ar.consensus_perc_[ch_type], ar.local_reject_.consensus_perc[ch_type]) # test complementarity of goods and bads assert_array_equal(np.sort(np.r_[bad_epochs_idx, good_epochs_idx]), np.arange(len(epochs_fit))) # test that transform does not change state of ar epochs_fit.fit_ = True epochs_clean = ar.transform(epochs_fit) # apply same data assert_array_equal(fix_log, ar.fix_log) assert_array_equal(bad_epochs_idx, ar.local_reject_.bad_epochs_idx_) assert_array_equal(good_epochs_idx, ar.local_reject_.good_epochs_idx_) epochs_new_clean = ar.transform(epochs_new) # apply to new data assert_array_equal(fix_log, ar.fix_log) assert_array_equal(bad_epochs_idx, ar.local_reject_.bad_epochs_idx_) assert_array_equal(good_epochs_idx, ar.local_reject_.good_epochs_idx_) is_same = epochs_new_clean.get_data() == epochs_new.get_data() if not np.isscalar(is_same): is_same = np.isscalar(is_same) assert_true(not is_same) assert_equal(epochs_clean.ch_names, epochs_fit.ch_names) # Now we test that the .bad_segments has the shape # of n_trials, n_sensors, such that n_sensors is the # the full number sensors, before picking. We, hence, # expect nothing to be rejected outside of our picks # but rejections can occur inside our picks. assert_equal(ar.bad_segments.shape[1], len(epochs_fit.ch_names)) assert_true(np.any(ar.bad_segments[:, picks])) non_picks = np.ones(len(epochs_fit.ch_names), dtype=bool) non_picks[picks] = False assert_true(not np.any(ar.bad_segments[:, non_picks])) assert_true(isinstance(ar.threshes_, dict)) assert_true(len(ar.picks) == len(picks)) assert_true(len(ar.threshes_.keys()) == len(ar.picks)) pick_eog = mne.pick_types(epochs.info, meg=False, eeg=False, eog=True) assert_true(epochs.ch_names[pick_eog] not in ar.threshes_.keys()) assert_raises( IndexError, ar.transform, epochs.copy().pick_channels([epochs.ch_names[pp] for pp in picks[:3]])) epochs.load_data() assert_raises(ValueError, compute_thresholds, epochs, 'dfdfdf') index, ch_names = zip(*[(ii, epochs_fit.ch_names[pp]) for ii, pp in enumerate(picks)]) threshes_a = compute_thresholds(epochs_fit, picks=picks, method='random_search') assert_equal(set(threshes_a.keys()), set(ch_names)) threshes_b = compute_thresholds(epochs_fit, picks=picks, method='bayesian_optimization') assert_equal(set(threshes_b.keys()), set(ch_names))
def test_autoreject(): """Test basic LocalAutoReject functionality.""" event_id = None tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) ########################################################################## # picking epochs include = [u'EEG %03d' % i for i in range(1, 45, 3)] picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, include=include, exclude=[]) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=10, reject=None, preload=False)[:10] ar = LocalAutoReject() assert_raises(ValueError, ar.fit, epochs) epochs.load_data() ar.fit(epochs) assert_true(len(ar.picks) == len(picks) - 1) # epochs with no picks. epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), decim=10, reject=None, preload=True)[:20] # let's drop some channels to speed up pre_picks = mne.pick_types(epochs.info, meg=True, eeg=True) pre_picks = np.r_[ mne.pick_types(epochs.info, meg='mag', eeg=False)[::15], mne.pick_types(epochs.info, meg='grad', eeg=False)[::60], mne.pick_types(epochs.info, meg=False, eeg=True)[::16], mne.pick_types(epochs.info, meg=False, eeg=False, eog=True)] pick_ch_names = [epochs.ch_names[pp] for pp in pre_picks] epochs.pick_channels(pick_ch_names) epochs_fit = epochs[:10] epochs_new = epochs[10:] X = epochs_fit.get_data() n_epochs, n_channels, n_times = X.shape X = X.reshape(n_epochs, -1) ar = GlobalAutoReject() assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_channels=n_channels) assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_times=n_times) assert_raises(ValueError, ar.fit, X) ar_global = GlobalAutoReject( n_channels=n_channels, n_times=n_times, thresh=40e-6) ar_global.fit(X) param_name = 'thresh' param_range = np.linspace(40e-6, 200e-6, 10) assert_raises(ValueError, validation_curve, ar_global, X, None, param_name, param_range) ########################################################################## # picking AutoReject picks = mne.pick_types( epochs.info, meg='mag', eeg=True, stim=False, eog=False, include=[], exclude=[]) ch_types = ['mag', 'eeg'] ar = LocalAutoReject(picks=picks) assert_raises(NotImplementedError, validation_curve, ar, epochs, None, param_name, param_range) thresh_func = partial(compute_thresholds, method='bayesian_optimization', random_state=42) ar = LocalAutoRejectCV(cv=3, picks=picks, thresh_func=thresh_func, n_interpolates=[1, 2], consensus_percs=[0.5, 1]) assert_raises(AttributeError, ar.fit, X) assert_raises(ValueError, ar.transform, X) assert_raises(ValueError, ar.transform, epochs) ar.fit(epochs_fit) fix_log = ar.fix_log bad_epochs_idx = ar.local_reject_.bad_epochs_idx_ good_epochs_idx = ar.local_reject_.good_epochs_idx_ for ch_type in ch_types: # test that kappa & rho are selected assert_true( ar.n_interpolate_[ch_type] in ar.n_interpolates) assert_true( ar.consensus_perc_[ch_type] in ar.consensus_percs) # test that local autoreject is synced with AR-CV instance assert_equal( ar.n_interpolate_[ch_type], ar.local_reject_.n_interpolate[ch_type]) assert_equal( ar.consensus_perc_[ch_type], ar.local_reject_.consensus_perc[ch_type]) # test complementarity of goods and bads assert_array_equal( np.sort(np.r_[bad_epochs_idx, good_epochs_idx]), np.arange(len(epochs_fit))) # test that transform does not change state of ar epochs_fit.fit_ = True epochs_clean = ar.transform(epochs_fit) # apply same data assert_array_equal(fix_log, ar.fix_log) assert_array_equal(bad_epochs_idx, ar.local_reject_.bad_epochs_idx_) assert_array_equal(good_epochs_idx, ar.local_reject_.good_epochs_idx_) epochs_new_clean = ar.transform(epochs_new) # apply to new data assert_array_equal(fix_log, ar.fix_log) assert_array_equal(bad_epochs_idx, ar.local_reject_.bad_epochs_idx_) assert_array_equal(good_epochs_idx, ar.local_reject_.good_epochs_idx_) is_same = epochs_new_clean.get_data() == epochs_new.get_data() if not np.isscalar(is_same): is_same = np.isscalar(is_same) assert_true(not is_same) assert_equal(epochs_clean.ch_names, epochs_fit.ch_names) # Now we test that the .bad_segments has the shape # of n_trials, n_sensors, such that n_sensors is the # the full number sensors, before picking. We, hence, # expect nothing to be rejected outside of our picks # but rejections can occur inside our picks. assert_equal(ar.bad_segments.shape[1], len(epochs_fit.ch_names)) assert_true(np.any(ar.bad_segments[:, picks])) non_picks = np.ones(len(epochs_fit.ch_names), dtype=bool) non_picks[picks] = False assert_true(not np.any(ar.bad_segments[:, non_picks])) assert_true(isinstance(ar.threshes_, dict)) assert_true(len(ar.picks) == len(picks)) assert_true(len(ar.threshes_.keys()) == len(ar.picks)) pick_eog = mne.pick_types(epochs.info, meg=False, eeg=False, eog=True) assert_true(epochs.ch_names[pick_eog] not in ar.threshes_.keys()) assert_raises( IndexError, ar.transform, epochs.copy().pick_channels( [epochs.ch_names[pp] for pp in picks[:3]])) epochs.load_data() assert_raises(ValueError, compute_thresholds, epochs, 'dfdfdf') index, ch_names = zip(*[(ii, epochs_fit.ch_names[pp]) for ii, pp in enumerate(picks)]) threshes_a = compute_thresholds( epochs_fit, picks=picks, method='random_search') assert_equal(set(threshes_a.keys()), set(ch_names)) threshes_b = compute_thresholds( epochs_fit, picks=picks, method='bayesian_optimization') assert_equal(set(threshes_b.keys()), set(ch_names))
event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=None, verbose=False, detrend=True) param_range = np.linspace(400e-7, 200e-6, 30) human_thresh = 80e-6 unit = r'$\mu$V' scaling = 1e6 _, test_scores = validation_curve(GlobalAutoReject(), epochs, y=None, param_name="thresh", param_range=param_range, cv=5, n_jobs=1) test_scores = -test_scores.mean(axis=1) best_thresh = param_range[np.argmin(test_scores)] matplotlib.style.use('ggplot') fontsize = 17 params = { 'axes.labelsize': fontsize + 2, 'text.fontsize': fontsize,
# In this particular case, we try from :math:`40{\mu}V` to :math:`200{\mu}V` import numpy as np # noqa param_range = np.linspace(40e-6, 200e-6, 30) ############################################################################### # Next, we can use :class:`autoreject.GlobalAutoReject` to find global # (i.e., for all channels) peak-to-peak thresholds. It is a class which # follows a :mod:`scikit-learn`-like API. To compute the Root Mean Squared # (RMSE) values at the candidate thresholds, we will use the function # :func:`autoreject.validation_curve`. from autoreject import GlobalAutoReject, validation_curve # noqa _, test_scores = validation_curve( GlobalAutoReject(), epochs, y=None, param_name="thresh", param_range=param_range, cv=5) test_scores = -test_scores.mean(axis=1) best_thresh = param_range[np.argmin(test_scores)] ############################################################################### # Now let us plot the RMSE values against the candidate thresholds. import matplotlib.pyplot as plt # noqa from autoreject import set_matplotlib_defaults # noqa set_matplotlib_defaults(plt) human_thresh = 80e-6 unit = r'$\mu$V' scaling = 1e6
def test_autoreject(): """Some basic tests for autoreject.""" event_id = {'Visual/Left': 3} tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) include = [u'EEG %03d' % i for i in range(1, 15)] picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=False, include=include, exclude=[]) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), decim=8, reject=None, add_eeg_ref=False, preload=True) X = epochs.get_data() n_epochs, n_channels, n_times = X.shape X = X.reshape(n_epochs, -1) ar = GlobalAutoReject() assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_channels=n_channels) assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_times=n_times) assert_raises(ValueError, ar.fit, X) ar = GlobalAutoReject(n_channels=n_channels, n_times=n_times, thresh=40e-6) ar.fit(X) reject = get_rejection_threshold(epochs) assert_true(reject, isinstance(reject, dict)) param_name = 'thresh' param_range = np.linspace(40e-6, 200e-6, 10) assert_raises(ValueError, validation_curve, ar, X, None, param_name, param_range) ar = LocalAutoReject() assert_raises(NotImplementedError, validation_curve, ar, epochs, None, param_name, param_range) ar = LocalAutoRejectCV() assert_raises(ValueError, ar.fit, X) assert_raises(ValueError, ar.transform, X) assert_raises(ValueError, ar.transform, epochs) epochs.load_data() assert_raises(ValueError, compute_thresholds, epochs, 'dfdfdf') for method in ['random_search', 'bayesian_optimization']: compute_thresholds(epochs, method=method)
picks=picks, baseline=(None, 0), reject=None, verbose=False, detrend=True) param_range = np.linspace(400e-7, 200e-6, 30) X = epochs.get_data() n_epochs, n_channels, n_times = X.shape human_thresh = 80e-6 unit = r'$\mu$V' scaling = 1e6 cv = KFold(n_epochs, n_folds=5, random_state=42) # XXX : you should have your own learning_curve to be able to pass Epochs # to fit and avoid passing these n_channels, n_times to the init _, test_scores = validation_curve( GlobalAutoReject(n_channels, n_times), X.reshape(n_epochs, -1), y=None, param_name="thresh", param_range=param_range, cv=cv, n_jobs=1, verbose=1) test_scores = -test_scores.mean(axis=1) best_thresh = param_range[np.argmin(test_scores)] matplotlib.style.use('ggplot') fontsize = 17 params = {'axes.labelsize': fontsize + 2, 'text.fontsize': fontsize, 'legend.fontsize': fontsize, 'xtick.labelsize': fontsize, 'ytick.labelsize': fontsize} plt.rcParams.update(params)