def testEntireEnsembleBuilder(ensemble_backend): ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ensemble_nbest=2, ) ensbuilder.SAVE2DISC = False ensbuilder.compute_loss_per_model() d2 = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_2_0.0/predictions_ensemble_0_2_0.0.npy") sel_keys = ensbuilder.get_n_best_preds() assert len(sel_keys) > 0 ensemble = ensbuilder.fit_ensemble(selected_keys=sel_keys) print(ensemble, sel_keys) n_sel_valid, n_sel_test = ensbuilder.get_valid_test_preds( selected_keys=sel_keys) # both valid and test prediction files are available assert len(n_sel_valid) > 0 assert n_sel_valid == n_sel_test y_valid = ensbuilder.predict( set_="valid", ensemble=ensemble, selected_keys=n_sel_valid, n_preds=len(sel_keys), index_run=1, ) y_test = ensbuilder.predict( set_="test", ensemble=ensemble, selected_keys=n_sel_test, n_preds=len(sel_keys), index_run=1, ) # predictions for valid and test are the same # --> should results in the same predictions np.testing.assert_array_almost_equal(y_valid, y_test) # since d2 provides perfect predictions # it should get a higher weight # so that y_valid should be exactly y_valid_d2 y_valid_d2 = ensbuilder.read_preds[d2][Y_VALID][:, 1] np.testing.assert_array_almost_equal(y_valid, y_valid_d2)
def testMaxModelsOnDisc(ensemble_backend, test_case, exp): ensemble_nbest = 4 ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ensemble_nbest=ensemble_nbest, max_models_on_disc=test_case, ) with unittest.mock.patch('os.path.getsize') as mock: mock.return_value = 100 * 1024 * 1024 ensbuilder.compute_loss_per_model() sel_keys = ensbuilder.get_n_best_preds() assert len(sel_keys) == exp, test_case
def testGetValidTestPreds(ensemble_backend): ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ensemble_nbest=1) ensbuilder.compute_loss_per_model() # d1 is a dummt prediction. d2 and d3 have the same prediction with # different name. num_run=2 is selected when doing sorted() d1 = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_1_0.0/predictions_ensemble_0_1_0.0.npy") d2 = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_2_0.0/predictions_ensemble_0_2_0.0.npy") d3 = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_3_100.0/predictions_ensemble_0_3_100.0.npy") sel_keys = ensbuilder.get_n_best_preds() assert len(sel_keys) == 1 ensbuilder.get_valid_test_preds(selected_keys=sel_keys) # Number of read files should be three and # predictions_ensemble_0_4_0.0.npy must not be in there assert len(ensbuilder.read_preds) == 3 assert os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_4_0.0/predictions_ensemble_0_4_0.0.npy" ) not in ensbuilder.read_preds # not selected --> should still be None assert ensbuilder.read_preds[d1][Y_VALID] is None assert ensbuilder.read_preds[d1][Y_TEST] is None assert ensbuilder.read_preds[d3][Y_VALID] is None assert ensbuilder.read_preds[d3][Y_TEST] is None # selected --> read valid and test predictions assert ensbuilder.read_preds[d2][Y_VALID] is not None assert ensbuilder.read_preds[d2][Y_TEST] is not None
def testNBest(ensemble_backend, ensemble_nbest, max_models_on_disc, exp): ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ensemble_nbest=ensemble_nbest, max_models_on_disc=max_models_on_disc, ) ensbuilder.compute_loss_per_model() sel_keys = ensbuilder.get_n_best_preds() assert len(sel_keys) == exp fixture = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_2_0.0/predictions_ensemble_0_2_0.0.npy") assert sel_keys[0] == fixture
def testFallBackNBest(ensemble_backend): ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ensemble_nbest=1) ensbuilder.compute_loss_per_model() print() print(ensbuilder.read_preds.keys()) print(ensbuilder.read_losses.keys()) print(ensemble_backend.temporary_directory) filename = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_2_0.0/predictions_ensemble_0_2_0.0.npy") ensbuilder.read_losses[filename]["ens_loss"] = -1 filename = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_3_100.0/predictions_ensemble_0_3_100.0.npy") ensbuilder.read_losses[filename]["ens_loss"] = -1 filename = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_1_0.0/predictions_ensemble_0_1_0.0.npy") ensbuilder.read_losses[filename]["ens_loss"] = -1 sel_keys = ensbuilder.get_n_best_preds() fixture = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_1_0.0/predictions_ensemble_0_1_0.0.npy") assert len(sel_keys) == 1 assert sel_keys[0] == fixture
def testRead(ensemble_backend): ensbuilder = EnsembleBuilder( backend=ensemble_backend, dataset_name="TEST", task_type=BINARY_CLASSIFICATION, metric=roc_auc, seed=0, # important to find the test files ) success = ensbuilder.compute_loss_per_model() assert success, str(ensbuilder.read_preds) assert len(ensbuilder.read_preds) == 3, ensbuilder.read_preds.keys() assert len(ensbuilder.read_losses) == 3, ensbuilder.read_losses.keys() filename = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_1_0.0/predictions_ensemble_0_1_0.0.npy") assert ensbuilder.read_losses[filename]["ens_loss"] == 0.5 filename = os.path.join( ensemble_backend.temporary_directory, ".auto-sklearn/runs/0_2_0.0/predictions_ensemble_0_2_0.0.npy") assert ensbuilder.read_losses[filename]["ens_loss"] == 0.0