def test_default_configuration(self): transformation, original = _test_preprocessing(SelectRates) self.assertEqual(transformation.shape[0], original.shape[0]) self.assertEqual(transformation.shape[1], 3) self.assertFalse((transformation == 0).all()) transformation, original = _test_preprocessing(SelectRates, make_sparse=True) self.assertTrue(scipy.sparse.issparse(transformation)) self.assertEqual(transformation.shape[0], original.shape[0]) self.assertEqual(transformation.shape[1], int(original.shape[1] / 2)) # Custon preprocessing test to check if clipping to zero works X_train, Y_train, X_test, Y_test = get_dataset(dataset="digits") original_X_train = X_train.copy() ss = sklearn.preprocessing.StandardScaler() X_train = ss.fit_transform(X_train) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates( random_state=1, **{hp_name: default[hp_name] for hp_name in default if default[hp_name] is not None} ) transformer = preprocessor.fit(X_train, Y_train) transformation, original = transformer.transform(X_train), original_X_train self.assertEqual(transformation.shape[0], original.shape[0]) # I don't know why its 52 here and not 32 which would be half of the # number of features. Seems to be related to a runtime warning raised # by sklearn self.assertEqual(transformation.shape[1], 52)
def test_default_configuration(self): transformation, original = _test_preprocessing(SelectRates) self.assertEqual(transformation.shape[0], original.shape[0]) self.assertEqual(transformation.shape[1], 3) self.assertFalse((transformation == 0).all()) transformation, original = _test_preprocessing(SelectRates, make_sparse=True) self.assertTrue(scipy.sparse.issparse(transformation)) self.assertEqual(transformation.shape[0], original.shape[0]) self.assertEqual(transformation.shape[1], int(original.shape[1] / 2)) # Custon preprocessing test to check if clipping to zero works X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') original_X_train = X_train.copy() ss = sklearn.preprocessing.StandardScaler() X_train = ss.fit_transform(X_train) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates(random_state=1, **{ hp_name: default[hp_name] for hp_name in default if default[hp_name] is not None }) transformer = preprocessor.fit(X_train, Y_train) transformation, original = transformer.transform( X_train), original_X_train self.assertEqual(transformation.shape[0], original.shape[0]) # I don't know why its 52 here and not 32 which would be half of the # number of features. Seems to be related to a runtime warning raised # by sklearn self.assertEqual(transformation.shape[1], 52)
def test_preprocessing_dtype(self): # Dense # np.float32 X_train, Y_train, X_test, Y_test = get_dataset("iris") self.assertEqual(X_train.dtype, np.float32) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates(random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float32) # np.float64 X_train, Y_train, X_test, Y_test = get_dataset("iris") X_train = X_train.astype(np.float64) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates(random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float64) # Sparse # np.float32 X_train, Y_train, X_test, Y_test = get_dataset("iris", make_sparse=True) self.assertEqual(X_train.dtype, np.float32) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates(random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float32) # np.float64 X_train, Y_train, X_test, Y_test = get_dataset("iris", make_sparse=True) X_train = X_train.astype(np.float64) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates(random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float64)
def test_preprocessing_dtype(self): # Dense # np.float32 X_train, Y_train, X_test, Y_test = get_dataset("iris") self.assertEqual(X_train.dtype, np.float32) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates( random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float32) # np.float64 X_train, Y_train, X_test, Y_test = get_dataset("iris") X_train = X_train.astype(np.float64) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates( random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float64) # Sparse # np.float32 X_train, Y_train, X_test, Y_test = get_dataset("iris", make_sparse=True) self.assertEqual(X_train.dtype, np.float32) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates( random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float32) # np.float64 X_train, Y_train, X_test, Y_test = get_dataset("iris", make_sparse=True) X_train = X_train.astype(np.float64) configuration_space = SelectRates.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() preprocessor = SelectRates( random_state=1, **{hp_name: default[hp_name] for hp_name in default}) preprocessor.fit(X_train, Y_train) Xt = preprocessor.transform(X_train) self.assertEqual(Xt.dtype, np.float64)