def test_tensor_scenario_type(self): n_experiences = 3 test_data_x = [[torch.zeros(2, 3)], torch.zeros(2, 3)] test_data_y = [[torch.zeros(2)], torch.zeros(2)] for complete_test in [True, False]: for tdx, tdy in zip(test_data_x, test_data_y): try: tensor_scenario( train_data_x=[torch.randn(2, 3) for _ in range(n_experiences)], train_data_y=[torch.zeros(2) for _ in range(n_experiences)], test_data_x=tdx, test_data_y=tdy, task_labels=[0]*n_experiences, complete_test_set_only=complete_test) except ValueError: if complete_test and \ not isinstance(tdx, torch.Tensor) and \ not isinstance(tdy, torch.Tensor): print("Value Error raised correctly")
"1": [13, 22, 20, 14, 6], "2": [9, 10, 0, 1, 2], "3": [11, 15, 17, 21], "4": [18, 19, 7, 8, 12], "5": [3, 4, 5, 16], } task_order_list = [perm] dataset = task_ordering(task_order_list[0]) generic_scenario = tensor_scenario( train_data_x=dataset[0], train_data_y=dataset[1], test_data_x=dataset[2], test_data_y=dataset[3], task_labels=[ 0 for key in task_order_list[0].keys() ], # shouldn't provide task ID for inference ) # log to Tensorboard tb_logger = TensorboardLogger(f"./tb_data/{cur_time}-SimpleMLP/") # log to text file text_logger = TextLogger(open(f"./logs/{cur_time}-SimpleMLP.txt", "w+")) # print to stdout interactive_logger = InteractiveLogger() eval_plugin = EvaluationPlugin(
perm = { "1": [14, 9, 12, 15], "2": [4, 3, 5, 16], "3": [17, 11, 8], "4": [7, 6, 10, 18], "5": [2, 13, 1, 19], } dataset = task_ordering(perm) generic_scenario = tensor_scenario( train_data_x=dataset[0], train_data_y=dataset[1], test_data_x=dataset[2], test_data_y=dataset[3], task_labels=[0 for key in perm.keys()], ) # Model Creation device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = SimpleMLP(num_classes=2, input_size=70, hidden_size=100) # log to Tensorboard tb_logger = TensorboardLogger(f"./tb_data/{cur_time}-simpleMLP_Domain/") # log to text file text_logger = TextLogger(open(f"./logs/{cur_time}-simpleMLP_Domain.txt", "w+")) # print to stdout