def setUpClass(cls): cls.fake_kitti_dir = tests.test_path() + "/datasets/Kitti/object" cls.dataset = generate_fake_dataset() # create generic ground plane (normal vector is straight up) cls.ground_plane = np.array([0., -1., 0., 0.]) cls.clusters = np.array([[1., 1., 1.], [2., 1., 1.]]) cls.anchor_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()
def setUpClass(cls): # Initialize the Kitti dataset test_dir = tests.test_path() # Get the unittest-kitti dataset dataset_builder = DatasetBuilder() cls.dataset = dataset_builder.build_kitti_dataset( dataset_builder.KITTI_UNITTEST) cls.log_dir = test_dir + '/logs' cls.bev_vgg_cls = vgg.BevVggClassification()
def test_project_to_image_space_tensors(self): anchors = np.asarray([[0, 0, 3, 2, 0, 6], [3, 0, 3, 2, 0, 2]], dtype=np.float64) img_idx = int('000217') img_shape = [375, 1242] dataset_config = DatasetBuilder.copy_config( DatasetBuilder.KITTI_UNITTEST) dataset_config.data_split = 'train' dataset_config.dataset_dir = tests.test_path() + \ "/datasets/Kitti/object" dataset = DatasetBuilder().build_kitti_dataset(dataset_config) stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir, img_idx).p2 # Project the 3D points in numpy space img_corners, img_corners_norm = anchor_projector.project_to_image_space( anchors, stereo_calib_p2, img_shape) # convert the required params to tensors tf_stereo_calib_p2 = tf.convert_to_tensor(stereo_calib_p2, dtype=tf.float32) tf_anchors = tf.convert_to_tensor(anchors, dtype=tf.float32) tf_img_shape = tf.convert_to_tensor(img_shape, dtype=tf.float32) # Project the 3D points in tensor space img_corners_tensor, img_corners_norm_tensor = \ anchor_projector.tf_project_to_image_space(tf_anchors, tf_stereo_calib_p2, tf_img_shape) sess = tf.Session() with sess.as_default(): img_corners_out = img_corners_tensor.eval() img_corners_norm_out = img_corners_norm_tensor.eval() np.testing.assert_allclose(img_corners, img_corners_out, atol=1e-04, err_msg='Incorrect corner projection') np.testing.assert_allclose( img_corners_norm, img_corners_norm_out, atol=1e-04, err_msg='Incorrect normalized corner projection')
def setUpClass(cls): cls.fake_kitti_dir = tests.test_path() + "/datasets/Kitti/object"
def setUpClass(cls): cls.fake_kitti_dir = tests.test_path() + "/datasets/Kitti/object" cls.dataset = DatasetBuilder.build_kitti_dataset( DatasetBuilder.KITTI_UNITTEST)