def serializeDataToOCFFile(schemaFile,outputFile,dataToSerialize): logging.debug("Parsing in avro schema:"+schemaFile) schema=parse_schema(schemaFile) logging.debug("Writing avro data to:"+outputFile) writer = DataFileWriter(open(outputFile, "w"), DatumWriter(), schema) writer.append(dataToSerialize) writer.close()
def testAppend(filename): fd = open(filename, 'a+b') datum_writer = DatumWriter() fwriter = DataFileWriter(fd, datum_writer) for i in xrange(10, 20): fwriter.append(_makeTestPerson(i)) fwriter.close()
def write(self, format): time_start = time.time() if format == 'json' or format == 'jsch': with open('./output/output.json', 'w') as file: for base_person_obj in self._base_person_list: file.write(json.dumps(self._get_json_person(base_person_obj), separators=(',', ':'))) # file.write(json.dumps(self._data_dict, separators=(',', ':'))) elif format == 'avro': writer = DataFileWriter(open('./output/output.avro', 'wb'), DatumWriter(), self._schema_avro) for user in self._data_dict: writer.append(user) writer.close() elif format == 'protobuf': with open('./output/output.pb', 'wb') as file: for base_person_obj in self._base_person_list: protobuf_person = self._get_proto_buf_person(base_person_obj) file.write(protobuf_person.SerializeToString()) elif format == 'gzjson': with gzip.open('./output/output.jsz', 'wb') as file: file.write(json.dumps(self._data_dict, separators=(',', ':'))) time_end = time.time() return time_end - time_start
def _write_lines(self,lines,fname): """ Write the lines to an avro file named fname Parameters -------------------------------------------------------- lines - list of strings to write fname - the name of the file to write to. """ import avro.io as avio from avro.datafile import DataFileReader,DataFileWriter from avro import schema #recursively make all directories dparts=fname.split(os.sep)[:-1] for i in range(len(dparts)): pdir=os.sep+os.sep.join(dparts[:i+1]) if not(os.path.exists(pdir)): os.mkdir(pdir) with file(fname,'w') as hf: inschema="""{"type":"string"}""" writer=DataFileWriter(hf,avio.DatumWriter(inschema),writers_schema=schema.parse(inschema)) #encoder = avio.BinaryEncoder(writer) #datum_writer = avio.DatumWriter() for datum in lines: writer.append(datum) writer.close()
def generate_sample_datasets (host_ips, metric_ids, year, month, day, hour): avro_schema = '' #load data from hdfs cat = subprocess.Popen(['sudo', '-u', 'hdfs', 'hadoop', 'fs', '-cat', '/user/pnda/PNDA_datasets/datasets/.metadata/schema.avsc'], stdout=subprocess.PIPE) for line in cat.stdout: avro_schema = avro_schema + line schema = avro.schema.parse(avro_schema) bytes_writer = io.BytesIO() encoder = avro.io.BinaryEncoder(bytes_writer) #create hdfs folder structure dir = create_hdfs_dirs (year, month, day, hour) filename = str(uuid.uuid4()) + '.avro' filepath = dir + filename tmp_file = '/tmp/' + filename writer = DataFileWriter(open(tmp_file, "w"), DatumWriter(), schema) start_dt = datetime.datetime(year, month, day, hour, 0, 0) start_ts = int(time.mktime(start_dt.timetuple())) end_dt = start_dt.replace(hour=hour+1) end_ts = int(time.mktime(end_dt.timetuple())) for ts in xrange(start_ts, end_ts, 1): #generate random pnda record on per host ip basis for host_ip in host_ips: record = {} record['timestamp'] = (ts * 1000) record['src'] = 'test' record['host_ip'] = host_ip record['rawdata'] = generate_random_metrics(metric_ids) #encode avro writer.append(record) writer.close() subprocess.Popen(['sudo', '-u', 'hdfs', 'hadoop', 'fs', '-copyFromLocal', tmp_file, dir]) return filepath
def _produce_test_input(self): schema = avro.schema.parse(""" { "name": "TestQueryTask_record", "type": "record", "doc": "The description", "fields": [ {"name": "col0", "type": "int", "doc": "The bold"}, {"name": "col1", "type": { "name": "inner_record", "type": "record", "doc": "This field shall be an inner", "fields": [ {"name": "inner", "type": "int", "doc": "A inner field"}, {"name": "col0", "type": "int", "doc": "Same name as outer but different doc"}, {"name": "col1", "type": ["null", "string"], "default": null, "doc": "Nullable primitive"}, {"name": "col2", "type": ["null", { "type": "map", "values": "string" }], "default": null, "doc": "Nullable map"} ] }, "doc": "This field shall be an inner"}, {"name": "col2", "type": "int", "doc": "The beautiful"}, {"name": "col3", "type": "double"} ] }""") self.addCleanup(os.remove, "tmp.avro") writer = DataFileWriter(open("tmp.avro", "wb"), DatumWriter(), schema) writer.append({'col0': 1000, 'col1': {'inner': 1234, 'col0': 3000}, 'col2': 1001, 'col3': 1.001}) writer.close() self.gcs_client.put("tmp.avro", self.gcs_dir_url + "/tmp.avro")
class AvroRecordWriter(TrivialRecordWriter): def __init__(self, simulator, stream): super(AvroRecordWriter, self).__init__(simulator, stream) self.deserializers = {} schema = None if self.simulator.avro_output_key_schema: self.deserializers['k'] = AvroDeserializer(self.simulator.avro_output_key_schema) schema = avro.schema.parse(self.simulator.avro_output_key_schema) if self.simulator.avro_output_value_schema: self.deserializers['v'] = AvroDeserializer(self.simulator.avro_output_value_schema) schema = avro.schema.parse(self.simulator.avro_output_value_schema) if self.simulator.avro_output == 'kv': schema_k_parsed = avro.schema.parse(self.simulator.avro_output_key_schema) schema_v_parsed = avro.schema.parse(self.simulator.avro_output_value_schema) schema_k = json.loads(self.simulator.avro_output_key_schema) schema_k.pop('namespace', None) schema_v = json.loads(self.simulator.avro_output_value_schema) schema_v.pop('namespace', None) schema = { 'type': 'record', 'name': 'kv', 'fields': [ {'name': 'key', 'type': schema_k}, {'name': 'value', 'type': schema_v if schema_k_parsed.fullname != schema_v_parsed.fullname else schema_k_parsed.name} ] } schema = avro.schema.parse(json.dumps(schema)) self.writer = DataFileWriter(self.stream, DatumWriter(), schema) def send(self, cmd, *vals): if cmd == 'done': self.writer.close() super(AvroRecordWriter, self).send(cmd, *vals) def output(self, key, value): if self.simulator.avro_output == 'k': obj_to_append = self.deserializers['k'].deserialize(key) elif self.simulator.avro_output == 'v': obj_to_append = self.deserializers['v'].deserialize(value) else: obj_to_append = { 'key': self.deserializers['k'].deserialize(key), 'value': self.deserializers['v'].deserialize(value) } self.writer.append(obj_to_append) def close(self): try: self.writer.close() except ValueError: # let's ignore if already closed pass self.stream.close()
def prepare(producer, arr, root, level): for it in arr: buf = io.BytesIO() writer = DataFileWriter(buf, DatumWriter(), sch) item = Item(root, it, False) writer.append(item.get_dict()) writer.flush() send(buf, level, producer)
def encode(self, raw_data): byte_stream = BytesIO() writer = DataFileWriter(byte_stream, DatumWriter(), self._schema) writer.append(raw_data) writer.flush() serialized_data = byte_stream.getvalue() writer.close() return serialized_data
def gen_avro(filename): schema = avro.schema.parse(SCHEMA) fo = open(filename, "wb") writer = DataFileWriter(fo, DatumWriter(), schema) for record in looney_records(): writer.append(record) writer.close() fo.close()
def run(self): # for normalizing alcohol minimum, maximum, average = 100, 0, 0 with open('raw.csv', 'r') as fd: csv_reader = csv.reader(fd, delimiter=',') collection = {} for i, row in enumerate(csv_reader): desc = row[3].lower().replace('.', '').replace(',', '') alc = float(row[-1]) if alc < minimum: minimum = alc if alc > maximum: maximum = alc average += alc # Remove gifts or items without description if 'engin' in desc: continue if 'gjafa' in desc or 'gjafa' in row[0]: continue if 'öskju' in desc or 'öskju' in row[0]: continue if 'flöskur m/glasi' in desc or 'kútur' in row[0]: continue features = self.parse(desc.split(), row[0]) features['alcohol'] = alc collection[row[0]] = features average = average / (i + 1) with open('beers.avsc', 'r') as fd: schema = avro.schema.Parse(fd.read()) with open('beers.avro', 'wb') as fd: writer = DataFileWriter(fd, DatumWriter(), schema) denominator_alc = maximum - minimum for k, v in collection.items(): v['bitterness'] = self.BITTERNESS['class'][ v['bitterness']] / self.BITTERNESS['maximum'] v['color'] = self.COLOR['class'][ v['color']] / self.COLOR['maximum'] v['clarity'] = self.CLARITY['class'][ v['clarity']] / self.CLARITY['maximum'] v['sweetness'] = self.SWEETNESS['class'][ v['sweetness']] / self.CLARITY['maximum'] v['alcohol'] = (v['alcohol'] - minimum) / denominator_alc v['name'] = k writer.append(v) writer.close()
class Avro_Merger(object): _merge_started = False _avro_extention = '.avro' _avro_stats_record = None def __init__(self, path, new_filename): try: self._avro_files = filter(lambda x: x.endswith(self._avro_extention), iter(os.listdir(path))) schema = avro.schema.parse(open(schema_file).read()) self._writter = DataFileWriter(open(output_file, 'w'), DatumWriter(), schema, 'deflate') except Exception as e: raise avro.schema.AvroException(e) sys.exit(1) def flog_metadata_handler(func): """ This is a decorator that handles avro meta data as well as very last stats record in each file during merging """ def wrapper(self, avro_records): """ Wrapper method for consuming flog avro file """ # Handle meta data if self._writter.tell() != 0: # TODO, need to fix this next(avro_records) # Handle stats line self._avro_stats_record = deque(avro_records, maxlen=1).pop() func(avro_records) return wrapper @flog_metadata_handler def consume_avro(self, avro_records): """ Write the avro data from the butter to file """ map(self._writter.append, iter(self._avro_record)) def merge(self): """ Loop through the avros and merge each file """ for file_ in self._avro_files: try: avro_records = DataFileReader(open(os.path.join(input_dir, file_), "r"), DatumReader()) except Exception as e: raise avro.schema.AvroException(e) # Consume the records! self.consume_avro(avro_records) # Write stats data to the last of the file self._writter.append(self._avro_stats_record) self._writter.close()
def check_schema(self, data, schema_path): schema = avro.schema.Parse( open(schema_path, "rb").read().decode("utf-8")) writer = DataFileWriter(open('_test.avro', "wb"), DatumWriter(), schema) writer.append(data) writer.close()
def _create_avro_file(schema, items, file_prefix): _, result_file_path = tempfile.mkstemp(prefix=file_prefix, suffix='.avro') parsed_schema = avro.schema.Parse(schema) with open(result_file_path, 'wb') as f: writer = DataFileWriter(f, DatumWriter(), parsed_schema) for s in items: writer.append(s) writer.close() return result_file_path
class AvroFileWriter(Writer): def __init__(self, schemaFile, avroFile): self.schema = avro.schema.Parse(open(schemaFile, "rb").read()) self.writer = DataFileWriter(open(avroFile, "wb"), DatumWriter(), self.schema) def write(self, obj): self.writer.append(obj); def close(self): self.writer.close()
def testWrite(filename): schema_object = avro.schema.parse(TEST_SCHEMA) fd = open(filename, 'wb') datum_writer = DatumWriter() fwriter = DataFileWriter(fd, datum_writer, schema_object) for i in xrange(10): fwriter.append(_makeTestPerson(i)) fwriter.close()
def gen_single_day_data(date, schema): writer = DataFileWriter(open("events2-{}.avro".format(date), "w"), DatumWriter(), schema) N = 10 ** 5 for i in xrange(0, N): tags = ["t{}".format(random.randint(1, 10)) for x in range(0, 4)] (tag1, tag2, tag3, tag4) = tags cookie = 'CK.{}'.format(random.randint(1, 10 ** 5)) writer.append({"tag1":tag1, "tag2":tag2, "tag3": tag3, "tag4":tag4, "date":date, "cookie":cookie, "count": 1}) writer.close()
def create_archive(basedir, destdir): all_files = [] all_dirs = [] # make a snapshot in case the output directory is the bundle source - so we don't recursively bundle the output for path, dirs, files in os.walk(basedir): for d in dirs: dir = os.path.join(path, d) all_dirs.append(dir) for f in files: file = os.path.join(path, f) all_files.append(file) schema = avro.schema.parse( open(os.path.join(os.path.dirname(os.path.realpath(__file__)), "avro-schemas.json")).read()) fileprefix = time.strftime("%Y%m%d-%H%M%S") avrofile = fileprefix + "-part-0001.avro" iteration = 1 fd = open(os.path.join(destdir, avrofile), 'wb') datum = avro.io.DatumWriter() writer = DataFileWriter(fd, datum, schema, codec='deflate') try: for d in all_dirs: val = makedir(os.path.basename(os.path.normpath(d)), os.path.relpath(d, basedir)) writer.append(val) for f in all_files: for sibling, numsiblings, chunk in get_file_chunks(f): if (fd.tell() + len(chunk)) > maxfilesize * 1.1: fd, writer, iteration = rotate_avro_file(fd, writer, iteration, fileprefix, destdir, datum, schema) file = makefile(os.path.basename(os.path.normpath(f)), os.path.relpath(f, basedir), numsiblings, sibling, chunk) writer.append(file) writer.flush() del file for f in all_files: os.remove(f) for d in all_dirs: os.rmdir(d) finally: writer.close() fd.close()
def objToBin2(): file = io.BytesIO() datum_writer = DatumWriter() fwriter = DataFileWriter(file, datum_writer, sc) for d in datum: fwriter.append(d) ab = file.getvalue() fwriter.close() return ab
def serialize_records(records, coin, avro_output=None): if avro_output == None: avro_output = str(coin) + ".avro" transformer = transform_data() schema = transformer.parse_schema() #avro_output=str(coin) + ".avro" with open(avro_output, 'wb') as out: writer = DataFileWriter(out, DatumWriter(), schema) for record in records: writer.append(record)
def write_json_to_avro(schema_uri, output_uri, json_str): schema = avro.schema.parse(open(schema_uri).read()) writer = DataFileWriter(open(output_uri, "w"), DatumWriter(), schema) json_list = json.loads(json_str) for row in json_list: writer.append(row) writer.close()
def serialize_records(records, outpath="funding.avro"): schema = parse_schema() # with open(outpath, 'wb') as out: out = StringIO() writer = DataFileWriter(out, DatumWriter(), schema) for record in records: record = dict((f, getattr(record, f)) for f in record._fields) record['fundedDate'] = record['fundedDate'].strftime('%Y-%m-%dT%H:M:S') writer.append(record) return out
def read_log(topic, log): schema = avro.schema.parse(open(os.path.abspath(os.path.dirname(__file__)) + "/avro_schema/" + topic + ".avsc").read()) print "schema:", schema writer = DataFileWriter(open(os.path.abspath(os.path.dirname(__file__)) + topic + ".avro", "w"), DatumWriter(), schema) for i in range(5): writer.append(log) writer.close() reader = DataFileReader(open(os.path.abspath(os.path.dirname(__file__)) + topic + ".avro", "r"), DatumReader()) for log in reader: print log
def main(): parser = ArgumentParser(description="Simple AMS example of subscription pull/consume") parser.add_argument('--host', type=str, default='messaging-devel.argo.grnet.gr', help='FQDN of AMS Service') parser.add_argument('--token', type=str, required=True, help='Given token') parser.add_argument('--project', type=str, required=True, help='Project registered in AMS Service') parser.add_argument('--subscription', type=str, required=True, help='Subscription name') parser.add_argument('--topic', type=str, required=True, help='Given topic') parser.add_argument('--nummsgs', type=int, default=3, help='Number of messages to pull and ack') parser.add_argument('--schema', type=str, required=True, help='Avro schema') parser.add_argument('--outfile', type=str, required=True, help='Output avro file') args = parser.parse_args() # initialize service with given token and project ams = ArgoMessagingService(endpoint=args.host, token=args.token, project=args.project) # ensure that subscription is created in first run. messages can be # pulled from the subscription only when subscription already exists # for given topic prior messages being published to topic try: if not ams.has_sub(args.subscription): ams.create_sub(args.subscription, args.topic) subscription = ams.get_sub(args.subscription, retobj=True) except AmsException as e: print(e) raise SystemExit(1) # try to pull number of messages from subscription. method will # return (ackIds, AmsMessage) tuples from which ackIds and messages # payload will be extracted. avro_payloads = list() for msg in subscription.pullack(args.nummsgs, retry=5, retrysleep=15, return_immediately=True): data = msg.get_data() msgid = msg.get_msgid() print('msgid={0}'.format(msgid)) avro_payloads.append(data) try: schema = load_schema(args.schema) if os.path.exists(args.outfile): avroFile = open(args.outfile, 'a+') writer = DataFileWriter(avroFile, DatumWriter()) else: avroFile = open(args.outfile, 'w+') writer = DataFileWriter(avroFile, DatumWriter(), schema) for am in avro_payloads: msg = avro_deserialize(am, args.schema) writer.append(msg) writer.close() avroFile.close() except Exception as e: print(e) raise SystemExit(1)
def main(): if len(sys.argv) < 3: print "Usage:", sys.argv[0] print "add [num of events to add] filename" print "list filename" exit(1) command = sys.argv[1] if command == 'add': noEvents = sys.argv[2] filename = sys.argv[3] # load existing events existingEvents = {} try: reader = DataFileReader(open(filename, "rb"), DatumReader()) existingEvents = reader reader.close() except IOError: print filename + ": Could not open file. Creating a new one." # Write back out to disk try: schema = avro.schema.parse(open("etc/userevent.avsc").read()) f = open(filename, "w") writer = DataFileWriter(f, DatumWriter(), schema) # Append new user events for i in range(0, int(noEvents)): newEvent = createUserEvent() print newEvent writer.append(newEvent) writer.close() print "Wrote {0} user events".format(noEvents) except IOError: print filename + ": Could not save file." elif command == 'list': listAllUserEvents(sys.argv[2]) else: print "Unregistered command. Exiting" sys.exit(1)
def _write_to_avro(self, log, fields): msglist = [] msg, tags = {}, {} msg = {'service': fields['serviceType'], 'timestamp': fields['timestamp'], 'hostname': fields['hostName'], 'metric': fields['metricName'], 'status': fields['metricStatus']} msgattrmap = {'detailsData': 'message', 'summaryData': 'summary', 'nagios_host': 'monitoring_host'} for attr in msgattrmap.keys(): if attr in fields: msg[msgattrmap[attr]] = fields[attr] tagattrmap = {'ROC': 'roc', 'voName': 'voName', 'voFqan': 'voFqan'} for attr in tagattrmap.keys(): tags[tagattrmap[attr]] = fields.get(attr, None) if tags: msg['tags'] = tags if ',' in fields['serviceType']: servtype = fields['serviceType'].split(',') msg['service'] = servtype[0].strip() msglist.append(msg) copymsg = msg.copy() copymsg['service'] = servtype[1].strip() msglist.append(copymsg) else: msglist.append(msg) sh.thlock.acquire(True) try: schema = avro.schema.parse(open(self.avroSchema).read()) if path.exists(log): avroFile = open(log, 'a+') writer = DataFileWriter(avroFile, DatumWriter()) else: avroFile = open(log, 'w+') writer = DataFileWriter(avroFile, DatumWriter(), schema) for m in msglist: writer.append(m) writer.close() avroFile.close() except (IOError, OSError) as e: sh.Logger.error(e) raise SystemExit(1) finally: sh.thlock.release()
def testWrite(filename, schema): fd = open(filename, 'wb') datum = DatumWriter() writer = DataFileWriter(fd, datum, schema) writer.append(makeObject("Person A", 23)) writer.append(makeObject("Person B", 31)) writer.append(makeObject("Person C", 28)) writer.close()
def write(fin, fout, schema): "write json to avro" schema = avro.schema.parse(open(schema).read()) data = json.load(open(fin, 'r')) writer = DataFileWriter(open(fout, "w"), DatumWriter(), schema) if isinstance(data, list): for doc in data: writer.append(doc) else: writer.append(data) writer.close()
def make_record_set(self, schema_path: str, items: list) -> bytes: if schema_path not in self.schemas: with open(schema_path, 'rb') as raw: self.schemas[schema_path] = avro.schema.Parse(raw.read()) out = BytesIO() writer = DataFileWriter(out, DatumWriter(), self.schemas[schema_path]) for item in items: writer.append(item) writer.flush() return out.getvalue()
def writer(self, outputs, stdout, stderr=sys.stderr): """Overrides base method for hadoop.JobTask """ schema = avro.schema.parse(json.dumps(self.avro_schema())) writer = DataFileWriter(stdout, DatumWriter(), schema) for output in outputs: writer.append(output[1]) #Needn't call close, cause the luigi job will do that. writer.flush()
def main(schema_fn, csv_fn, avro_fn): with open(schema_fn) as f_in: schema = avro.schema.parse(f_in.read()) with open(csv_fn) as f_in: reader = csv.reader(f_in, delimiter=';') with open(avro_fn, 'wb') as f_out: writer = DataFileWriter(f_out, DatumWriter(), schema) for row in reader: writer.append(dict(zip(FIELDS, row))) writer.close()
def objToBinTmp2(): with tempfile.SpooledTemporaryFile(suffix='.avro') as tmp: writer = DataFileWriter(tmp, DatumWriter(), sc) for d in datum: writer.append(d) writer.flush() tmp.seek(0) ab = tmp.read() writer.close() tmp.close() return ab
def serialize_records(msgs, schema) -> bytes: with io.BytesIO() as buf: writer = DataFileWriter(buf, DatumWriter(), avro.schema.parse(json.dumps(schema))) for line_item in msgs: #print(f"SERRECORD {line_item}") writer.append(line_item) writer.flush() record = buf.getvalue() return record
def create_archive(basedir, destdir): all_files = [] all_dirs = [] # make a snapshot in case the output directory is the bundle source - so we don't recursively bundle the output for path, dirs, files in os.walk(basedir): for d in dirs: dir = os.path.join(path, d) all_dirs.append(dir) for f in files: file = os.path.join(path, f) all_files.append(file) schema = avro.schema.parse( open( os.path.join(os.path.dirname(os.path.realpath(__file__)), "avro-schemas.json")).read()) fileprefix = time.strftime("%Y%m%d-%H%M%S") avrofile = fileprefix + "-part-0001.avro" iteration = 1 fd = open(os.path.join(destdir, avrofile), 'wb') datum = avro.io.DatumWriter() writer = DataFileWriter(fd, datum, schema, codec='deflate') try: for d in all_dirs: val = makedir(os.path.basename(os.path.normpath(d)), os.path.relpath(d, basedir)) writer.append(val) for f in all_files: for sibling, numsiblings, chunk in get_file_chunks(f): if (fd.tell() + len(chunk)) > maxfilesize * 1.1: fd, writer, iteration = rotate_avro_file( fd, writer, iteration, fileprefix, destdir, datum, schema) file = makefile(os.path.basename(os.path.normpath(f)), os.path.relpath(f, basedir), numsiblings, sibling, chunk) writer.append(file) writer.flush() del file for f in all_files: os.remove(f) for d in all_dirs: os.rmdir(d) finally: writer.close() fd.close()
def test_datalake_origin_with_avro(sdc_builder, sdc_executor, azure): """Ensure that the origin can properly read Avro document.""" directory_name = get_random_string(string.ascii_letters, 10) file_name = get_random_string(string.ascii_letters, 10) file = f'{directory_name}/{file_name}.avro' data = {'name': 'Arvind P.'} total_records = len(data) try: # Create Avro file (with temporary location) with open(f'{TMP}{file_name}', "wb") as data_file: writer = DataFileWriter(data_file, DatumWriter(), avro.schema.Parse(json.dumps(SCHEMA))) # Write data using DatumWriter writer.append(data) writer.close() # And upload it to ADSL with open(f'{TMP}{file_name}', 'rb') as fp: dl_fs = azure.datalake.file_system dl_fs.mkdir(directory_name) dl_fs.touch(file) dl_fs.write(file, fp.read(), content_type='application/octet-stream') # Build the origin pipeline builder = sdc_builder.get_pipeline_builder() origin = builder.add_stage(name=SOURCE_STAGE_NAME) origin.set_attributes(data_format='AVRO', files_directory=f'/{directory_name}', file_name_pattern='*') wiretap = builder.add_wiretap() origin >> wiretap.destination pipeline = builder.build().configure_for_environment(azure) sdc_executor.add_pipeline(pipeline) # start pipeline and read file in ADLS sdc_executor.start_pipeline( pipeline).wait_for_pipeline_output_records_count(total_records) sdc_executor.stop_pipeline(pipeline) assert len(wiretap.output_records) == 1 assert wiretap.output_records[0].field['name'] == 'Arvind P.' finally: logger.info( 'Azure Data Lake directory %s and underlying files will be deleted.', directory_name) dl_fs.rmdir(directory_name, recursive=True)
def convert_file_to_avro(): schema = avro.schema.parse(open(file_name + ".avsc").read()) data = read_csv_from_hdfs(schema) writer = DataFileWriter(open(result_file_path, "wb"), DatumWriter(), schema, codec='deflate') for count, row in enumerate(data): try: writer.append(row) except IndexError: print("Something is wrong in {0}".format(row)) writer.close()
def main(): schema = avro.schema.parse(open("user.avsc", "rb").read()) writer = DataFileWriter(open("users.avro", "wb"), DatumWriter(), schema) writer.append({"name": "Alyssa", "favorite_number": 256}) writer.append({"name": "Ben", "favorite_number": 7, "favorite_color": "red"}) writer.close() reader = DataFileReader(open("users.avro", "rb"), DatumReader()) for user in reader: print(user) reader.close()
def read_and_write_avro_data(): avsc_string = """{"namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "age", "type": ["int", "null"]}, {"name": "sal", "type": ["long", "null"]}, {"name": "xfloat", "type": ["float", "null"]}, {"name": "xdouble", "type": ["double", "null"]}, {"name": "xbytes", "type": ["bytes", "null"]}, {"name": "xbool", "type": ["boolean", "null"]} ] } """ # generate a avro schema file write_to_file(avro_schema, avsc_string) schema = avro.schema.Parse(open(avro_schema).read()) writer = DataFileWriter(open(avro_data, "wb"), DatumWriter(), schema) writer.append({ "name": "Alyssa", "age": 256, "sal": 30438940839849384, "xfloat": 983494.3434, "xdouble": 983498934.3434, "xbytes": b"52017-", "xbool": True }) writer.append({ "name": "dd5", "age": 6, "sal": 8940839849384, "xfloat": 983494.3434, "xbytes": b"dsd2017-", "xbool": True }) writer.close() # load avro file reader = DataFileReader(open(avro_data, "rb"), DatumReader()) for user in reader: print(user) reader.close() # cleanup os.remove(avro_schema) os.remove(avro_data)
def encode(self, event: BaseEvent) -> bytes: schema = self._schemas[event.name] if schema is None: raise NameError( f"No schema found to encode event with name {event.name}") output = BytesIO() writer = DataFileWriter(output, DatumWriter(), schema) writer.append(event.data) writer.flush() encoded_event = output.getvalue() writer.close() return encoded_event
def simpleETL(config, rawJsonData): print("**********************Simple ET*************************") daysOfForecasts = len(rawJsonData["DailyForecasts"]) logFolder = config["Log"]["Folder"] logFile = logFolder + config["Log"]["LogFile"] dWHForecastPath = config["ETL"]["Load"]["AvgData"]["DWHForecastPath"] days = [] try: # ET for dayNumer in range(daysOfForecasts): dayDic = {} # create an empty dictionary d = rawJsonData["DailyForecasts"][dayNumer] # print str(dayNumer)+'-----------' # read accu weather format date = d["Date"] minTemp = d["Temperature"]["Minimum"]["Value"] maxTemp = d["Temperature"]["Maximum"]["Value"] # load desire avro format dayDic["temperatureMin_C"] = minTemp dayDic["temperatureMax_C"] = maxTemp dayDic["date"] = date # print(date + " " + str(minTemp) + " " + str(maxTemp)) days.append(dayDic) # L schemaFile = config["ETL"]["Load"]["Avro"]["SchemaFile"] schemaJson = json.load(open(schemaFile, "r")) # pp.pprint(schemaJson) dayAvroSchemaString = json.dumps(schemaJson) schema = avro.schema.Parse(dayAvroSchemaString) # create a writer dataAvro = dWHForecastPath+"simpleETL.avro" writer = DataFileWriter(open(dataAvro, "wb"), DatumWriter(), schema) # append each day for day in days: # pp.pprint(day) writer.append(day) # close writer writer.close() print("**********************Simple Check**********************") _readAvro(dataAvro) except Exception as ex: print(ex) with open(logFile, "a") as file: file.write("{}\n".format(ex))
def avro_dumps(data, schema): """dump the given data into an avro file with the provided schema""" schema = avro.schema.Parse(schema) fp = BytesIO() writer = DataFileWriter(fp, DatumWriter(), schema) if isinstance(data, list): for item in data: writer.append(item) else: writer.append(data) writer.flush() contents = fp.getvalue() fp.close() return contents
def produce_kafka_messages(topic, cluster, message, data_format): """Send basic messages to Kafka""" producer = cluster.kafka.producer() basic_data_formats = [ 'XML', 'CSV', 'SYSLOG', 'NETFLOW', 'COLLECTD', 'BINARY', 'LOG', 'PROTOBUF', 'JSON', 'TEXT' ] # Write records into Kafka depending on the data_format. if data_format in basic_data_formats: producer.send(topic, message) elif data_format == 'WITH_KEY': producer.send(topic, message, key=get_random_string(string.ascii_letters, 10).encode()) elif data_format == 'AVRO': writer = avro.io.DatumWriter(avro.schema.Parse(json.dumps(SCHEMA))) bytes_writer = io.BytesIO() encoder = avro.io.BinaryEncoder(bytes_writer) writer.write(message, encoder) raw_bytes = bytes_writer.getvalue() producer.send(topic, raw_bytes) elif data_format == 'AVRO_WITHOUT_SCHEMA': bytes_writer = io.BytesIO() datum_writer = avro.io.DatumWriter( avro.schema.Parse(json.dumps(SCHEMA))) data_file_writer = DataFileWriter(writer=bytes_writer, datum_writer=datum_writer, writer_schema=avro.schema.Parse( json.dumps(SCHEMA))) data_file_writer.append(message) data_file_writer.flush() raw_bytes = bytes_writer.getvalue() data_file_writer.close() producer.send(topic, raw_bytes) logger.info('Flushing producer') producer.flush() logger.info('Validating that the message can be seen in Kafka') consumer = cluster.kafka.consumer(consumer_timeout_ms=5000, auto_offset_reset='earliest') consumer.subscribe([topic]) msgs_received = [msg for msg in consumer] assert 1 == len(msgs_received)
def dict_to_avro(data: Dict): # TO avro format file avro_schema = schema.Parse(open("rate.avsc", "rb").read()) # write avro file writer = DataFileWriter(open("ratings.avro", "wb"), DatumWriter(), avro_schema) writer.append(data) writer.close() # read avro file reader = DataFileReader(open("ratings.avro", "rb"), DatumReader()) for user in reader: pretty_print(json.dumps(user)) reader.close()
def _write_data(self, directory=None, prefix=tempfile.template, codec='null', count=len(RECORDS)): with tempfile.NamedTemporaryFile( delete=False, dir=directory, prefix=prefix) as f: writer = DataFileWriter(f, DatumWriter(), self.SCHEMA, codec=codec) len_records = len(self.RECORDS) for i in range(count): writer.append(self.RECORDS[i % len_records]) writer.close() self._temp_files.append(f.name) return f.name
def generate_service_config(args, identifier, name, version, description, parameter, service_dir, service_schema, config_name, input_ports, output_ports): #Converting parameter tuples to param array params = [] if parameter is not None: for p in parameter: param = {} param["key"] = p[0] param["name"] = p[1] param["parameterType"] = int(p[2]) params.append(param) #Avro schema = avro.schema.parse(open(service_schema.name).read()) writer = DataFileWriter(open(os.path.join(service_dir, config_name), "wb"), DatumWriter(), schema) writer.append({"id": identifier, "name": name, "version": version, "description": description, "inputPorts": input_ports, "outputPorts": output_ports, "params":params}) writer.close()
def handle_avro_print_to_file(message): schema = avro.schema.Parse(open("schema/addressbook.avsc", "rb").read()) message_buf = io.BytesIO(message) reader = avro.datafile.DataFileReader(message_buf, avro.io.DatumReader()) dataFile = open("schema/addressbook.avro", "wb") writer = DataFileWriter(dataFile, DatumWriter(), schema) for thing in reader: writer.append(thing) reader.close() writer.close()
class AvroAppender(threading.Thread): def __init__(self, file): threading.Thread.__init__(self) self.avro_writer = DataFileWriter(open(file, "w"), DatumWriter(), schema) self.queue = Queue.Queue() self.should_stop = False self.mutex = threading.Lock() self.start() def log_append(self, user, advertiser, **kwargs): if user is not None and advertiser is not None: record = dict(user=user, advertiser=advertiser) if kwargs["ip"]: record["ip"] = kwargs["ip"] if kwargs["agent"]: record["agent"] = kwargs["agent"] if kwargs["time"]: record["timestamp"] = float(kwargs["time"]) else: record["timestamp"] = float(time.time()) if kwargs["keywords"]: record["keywords"] = list(set([string.strip() for string in kwargs["keywords"].split(",")])) self.queue.put_nowait(record) else: print "Missing user" def close_appender(self): self.mutex.acquire() self.should_stop = True self.mutex.release() def run(self): while True: try: record = self.queue.get(False, 1000) self.avro_writer.append(record) except Queue.Empty: self.mutex.acquire() stop = self.should_stop self.mutex.release() if stop: break self.avro_writer.close()
def write(self): try: schema = avro.schema.parse(open(self.schema).read()) avrofile = open(self.outfile, 'w+') datawrite = DataFileWriter(avrofile, DatumWriter(), schema) for elem in self.listdata: datawrite.append(elem) datawrite.close() avrofile.close() except (avro.schema.SchemaParseException, avro.io.AvroTypeException): self.logger.error(" couldn't parse %s" % self.schema) raise SystemExit(1) except IOError as e: self.logger.error(e) raise SystemExit(1)
def main(): """Start of execution""" #combine the schemas known_schemas = avro.schema.Names() types_schema = LoadAvsc("parameter_types.avsc", known_schemas) param_schema = LoadAvsc("parameter.avsc", known_schemas) print json.dumps(param_schema.to_json(avro.schema.Names()), indent=2) #test the schema works param_file = open("parameters.avro", "w") writer = DataFileWriter(param_file, DatumWriter(), param_schema) param_1 = {"name": "test", "description":"An Avro test.", "type":"int"} param_2 = {"name": "test", "description":"An Avro test.", "type":"boolean"} writer.append(param_1) writer.append(param_2) writer.close() reader = DataFileReader(open("parameters.avro", "r"), DatumReader()) for parameter in reader: print parameter reader.close()
def readAndWriteAvro(): """ Unlike java, avro does not let you generate code for Tweet in python. So only way to read and write data is without using code generation""" #Read the schema schema = avro.schema.parse(open("tweet.avsc").read()) #write some data writer = DataFileWriter(open("tweets.avro", "w"), DatumWriter(), schema) writer.append({"tweetId": 5, "user": "******", "text" : "Tweeting from python as well"}) writer.close() #read the same data tweets = DataFileReader(open("tweets.avro", "r"), DatumReader()) for tweet in tweets: print tweet tweets.close()
def main(argv): try: schema_fn = argv[1] n_users = int(argv[2]) avro_fn = argv[3] except IndexError: sys.exit('Usage: %s SCHEMA_FILE N_USERS AVRO_FILE' % argv[0]) with open(schema_fn) as f_in: schema = avro.schema.parse(f_in.read()) with open(avro_fn, 'wb') as f_out: writer = DataFileWriter(f_out, DatumWriter(), schema) for i in xrange(n_users): writer.append({ 'name': random.choice(NAME_POOL), 'office': random.choice(OFFICE_POOL), 'favorite_color': random.choice(COLOR_POOL), 'favorite_number': i, }) writer.close()
def main(): parser = argparse.ArgumentParser() parser.add_argument('-s', nargs=1, help='new schema', required=True, metavar='avro schema') parser.add_argument('-i', nargs='+', help='avro files', required=True, metavar='avro file') parser.add_argument('-ts', action='store_true', help='convert int tag values to str', required=False) parser.add_argument('-o', nargs=1, help='output directory', required=True, metavar='output directory') args = parser.parse_args() for f in args.i: out = [] if args.o[0].startswith('/'): dest = args.o[0] else: dest = os.path.abspath('.') + '/' + args.o[0] try: os.makedirs(dest) except OSError as e: if e.args[0] != errno.EEXIST: print os.strerror(e.args[0]), e.args[1], args.o[0] raise SystemExit(1) schema = avro.schema.parse(open(args.s[0]).read()) writer = DataFileWriter(open(dest + '/' + os.path.basename(f), 'w'), DatumWriter(), schema) reader = DataFileReader(open(f, 'r'), DatumReader()) try: for i, entry in enumerate(reader): if args.ts: for t in entry['tags']: if isinstance(entry['tags'][t], int): entry['tags'][t] = str(entry['tags'][t]) writer.append(entry) writer.close() except UnicodeDecodeError as e: pprint.pprint(e) print f
def traditional_avro(N): from avro.datafile import DataFileReader, DataFileWriter from avro.io import DatumWriter writer = DataFileWriter(open("traditional_avro_{}_ints.avro".format(N), "w"), DatumWriter(), schema) try: INTERVAL=1 import numpy as np t_start = time.time() t0 = time.time() nums = np.random.random_integers(0, 100, (N, 4)) print("Generated data ({:.2f})".format(time.time() - t0)) i = 0 t0 = time.time() for item in nums: writer.append(dict(zip((col1, col2, col3, col4), item))) if (time.time() - t0) > INTERVAL: print_status("Completed {0:.2f}% ({1:.2f})".format( (i / float(N)) * 100, time.time() - t_start)) t0 = time.time() i = i + 1 print("\n") print("Finished ({:.2f})".format(time.time() - t_start)) return (N, time.time() - t_start) except Exception, e: raise e
def _produce_test_input(self): schema = avro.schema.parse(""" { "type":"record", "name":"TrackEntity2", "namespace":"com.spotify.entity.schema", "doc":"Track entity merged from various sources", "fields":[ { "name":"map_record", "type":{ "type":"map", "values":{ "type":"record", "name":"MapNestedRecordObj", "doc":"Nested Record in a map doc", "fields":[ { "name":"element1", "type":"string", "doc":"element 1 doc" }, { "name":"element2", "type":[ "null", "string" ], "doc":"element 2 doc" } ] } }, "doc":"doc for map" }, { "name":"additional", "type":{ "type":"map", "values":"string" }, "doc":"doc for second map record" }, { "name":"track_gid", "type":"string", "doc":"Track GID in hexadecimal string" }, { "name":"track_uri", "type":"string", "doc":"Track URI in base62 string" }, { "name":"Suit", "type":{ "type":"enum", "name":"Suit", "doc":"enum documentation broz", "symbols":[ "SPADES", "HEARTS", "DIAMONDS", "CLUBS" ] } }, { "name":"FakeRecord", "type":{ "type":"record", "name":"FakeRecord", "namespace":"com.spotify.data.types.coolType", "doc":"My Fake Record doc", "fields":[ { "name":"coolName", "type":"string", "doc":"Cool Name doc" } ] } }, { "name":"master_metadata", "type":[ "null", { "type":"record", "name":"MasterMetadata", "namespace":"com.spotify.data.types.metadata", "doc":"metadoc", "fields":[ { "name":"track", "type":[ "null", { "type":"record", "name":"Track", "doc":"Sqoop import of track", "fields":[ { "name":"id", "type":[ "null", "int" ], "doc":"id description field", "default":null, "columnName":"id", "sqlType":"4" }, { "name":"name", "type":[ "null", "string" ], "doc":"name description field", "default":null, "columnName":"name", "sqlType":"12" } ], "tableName":"track" } ], "default":null } ] } ] }, { "name":"children", "type":{ "type":"array", "items":{ "type":"record", "name":"Child", "doc":"array of children documentation", "fields":[ { "name":"name", "type":"string", "doc":"my specific child\'s doc" } ] } } } ] }""") self.addCleanup(os.remove, "tmp.avro") writer = DataFileWriter(open("tmp.avro", "wb"), DatumWriter(), schema) writer.append({ u'track_gid': u'Cool guid', u'map_record': { u'Cool key': { u'element1': u'element 1 data', u'element2': u'element 2 data' } }, u'additional': { u'key1': u'value1' }, u'master_metadata': { u'track': { u'id': 1, u'name': u'Cool Track Name' } }, u'track_uri': u'Totally a url here', u'FakeRecord': { u'coolName': u'Cool Fake Record Name' }, u'Suit': u'DIAMONDS', u'children': [ { u'name': u'Bob' }, { u'name': u'Joe' } ] }) writer.close() self.gcs_client.put("tmp.avro", self.gcs_dir_url + "/tmp.avro")
def writeFile(): writer = DataFileWriter(open("part-00000.avro", "w"), DatumWriter(), schema) writer.append({"logline": "2016\t30"}) writer.close()