def test_GPKG(self): """Tests GPKG instantiation.""" exp = get_branin_experiment(with_batch=True) with self.assertRaises(ValueError): get_GPKG(experiment=exp, data=exp.fetch_data()) exp.trials[0].run() gpkg = get_GPKG(experiment=exp, data=exp.fetch_data()) self.assertIsInstance(gpkg, TorchModelBridge) # test transform_configs with winsorization configs = { "Winsorize": { "winsorization_lower": 0.1, "winsorization_upper": 0.1 } } gpkg_win = get_GPKG(experiment=exp, data=exp.fetch_data(), transform_configs=configs) self.assertIsInstance(gpkg_win, TorchModelBridge) self.assertEqual(gpkg_win._transform_configs, configs) # test multi-fidelity optimization exp.parameters["x2"] = RangeParameter( name="x2", parameter_type=exp.parameters["x2"].parameter_type, lower=-5.0, upper=10.0, is_fidelity=True, target_value=10.0, ) gpkg_mf = get_GPKG(experiment=exp, data=exp.fetch_data()) self.assertIsInstance(gpkg_mf, TorchModelBridge)
def test_GPKG(self): """Tests GPKG instantiation.""" exp = get_branin_experiment(with_batch=True) with self.assertRaises(ValueError): get_GPKG(experiment=exp, data=exp.fetch_data()) exp.trials[0].run() gpkg = get_GPKG(experiment=exp, data=exp.fetch_data()) self.assertIsInstance(gpkg, TorchModelBridge) gpkg_win = get_GPKG(experiment=exp, data=exp.fetch_data(), winsorization_limits=[0.1, 0.1]) self.assertIsInstance(gpkg_win, TorchModelBridge) configs_expected = { "Winsorize": { "winsorization_lower": 0.1, "winsorization_upper": 0.1 } } self.assertEqual(gpkg_win._transform_configs, configs_expected)
def test_GPKG(self): """Tests GPKG instantiation.""" exp = get_branin_experiment(with_batch=True) with self.assertRaises(ValueError): get_GPKG(experiment=exp, data=exp.fetch_data()) exp.trials[0].run().mark_completed() gpkg = get_GPKG(experiment=exp, data=exp.fetch_data()) self.assertIsInstance(gpkg, TorchModelBridge) # Check that .gen returns without failure gr = gpkg.gen(n=1) self.assertEqual(len(gr.arms), 1) # test transform_configs with winsorization configs = { "Winsorize": { "winsorization_config": WinsorizationConfig( lower_quantile_margin=0.1, upper_quantile_margin=0.1, ) } } gpkg_win = get_GPKG( experiment=exp, data=exp.fetch_data(), transform_configs=configs ) self.assertIsInstance(gpkg_win, TorchModelBridge) self.assertEqual(gpkg_win._transform_configs, configs) # test multi-fidelity optimization exp.parameters["x2"] = RangeParameter( name="x2", parameter_type=exp.parameters["x2"].parameter_type, lower=-5.0, upper=10.0, is_fidelity=True, target_value=10.0, ) gpkg_mf = get_GPKG(experiment=exp, data=exp.fetch_data()) self.assertIsInstance(gpkg_mf, TorchModelBridge)