예제 #1
0
                "train_image_folder":   "sample_datasets/segmentation/imgs",
                "train_annot_folder":   "sample_datasets/segmentation/anns",
                "train_times":          4,
                "valid_image_folder":   "sample_datasets/segmentation/imgs_validation",
                "valid_annot_folder":   "sample_datasets/segmentation/anns_validation",
                "valid_times":          4,
                "valid_metric":         "val_loss",
                "batch_size":           8,
                "learning_rate":        1e-4,
                "saved_folder":   		"/home/ubuntu/space safety/segment",
                "first_trainable_layer": "",
                "ignore_zero_class":    False,
                "augumentation":		True
            },
            "converter" : {
                "type":   				['k210']
            }
        }

    dict = {'all':[classifier,detector,segnet],'classifier':[classifier],'detector':[detector],'segnet':[segnet]}

    return dict[network_type]

for item in configs(args.type):
    model_path = setup_training(config_dict=item)
    K.clear_session()
    setup_inference(item,model_path)



예제 #2
0
            "learning_rate": 1e-4,
            "saved_folder": "/home/ubuntu/space safety/segment",
            "first_trainable_layer": "",
            "ignore_zero_class": False,
            "augumentation": True
        },
        "converter": {
            "type": ["k210", "tflite"]
        }
    }

    dict = {
        'classifier': [classifier],
        'detector': [detector],
        'segnet': [segnet]
    }

    return dict[network_type]


#visualize_dataset('/home/ubuntu/github/sample_datasets/detector/imgs','/home/ubuntu/github/sample_datasets/detector/anns')

if not args.conf:
    for item in configs(args.type):
        setup_inference(item, args.weights)
        K.clear_session()
else:
    with open(args.conf) as config_buffer:
        config = json.loads(config_buffer.read())
        setup_inference(config, args.weights)