예제 #1
0
    def axis_titles(self, x=None, y=None):
        """Apply axis titles to the figure.

        This is a convenience method for manually modifying the "Axes" mark.

        Parameters
        ----------
        x: string, default 'null'
            X-axis title
        y: string, default 'null'
            Y-axis title

        Example
        -------
        >>>vis.axis_titles(y="Data 1", x="Data 2")

        """
        keys = self.axes.get_keys()

        if keys:
            for key in keys:
                if key == 'x':
                    self.axes[key].title = x
                elif key == 'y':
                    self.axes[key].title = y
        else:
            self.axes.extend(
                [Axis(type='x', title=x),
                 Axis(type='y', title=y)])
예제 #2
0
파일: charts.py 프로젝트: nsonnad/vincent
    def __init__(self, *args, **kwargs):
        """Create a Vega Bar Chart"""

        super(Bar, self).__init__(*args, **kwargs)

        #Scales
        self.scales['x'] = Scale(name='x', type='ordinal', range='width',
                                 domain=DataRef(data='table', field="data.idx"))
        self.scales['y'] = Scale(name='y', range='height', nice=True,
                                 domain=DataRef(data='table', field="data.val"))
        self.axes.extend([Axis(type='x', scale='x'),
                          Axis(type='y', scale='y')])

        #Marks
        enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"),
                                  y=ValueRef(scale='y', field="data.val"),
                                  width=ValueRef(scale='x', band=True,
                                                 offset=-1),
                                  y2=ValueRef(scale='y', value=0))

        update_props = PropertySet(fill=ValueRef(value='steelblue'))

        mark = Mark(type='rect', from_=MarkRef(data='table'),
                    properties=MarkProperties(enter=enter_props,
                                              update=update_props))

        self.marks.append(mark)
예제 #3
0
        def _get_axis_from_header(_header, _id):
            """
            Local utility to create an Axis object from the data we can extract
            from the FITS header. As FITS files authors are pretty whimsical
            regarding the names of the header cards, we check for as many names
            as we can.

            Note that _id
            """
            _step = _get_meta(_header, [
                'CDELT%d' % _id,
                'CD%d_%d' % (_id, _id),
                'CDEL_%d' % _id,
            ])
            # Make sure our start value is for pixel 0, not CRPIX.
            # Note that the 1st pixel has a CRPIX value of 1, not 0.
            _val = _get_meta(_header, ['CRVAL%d' % _id])
            _start = _val - (_get_meta(_header, ['CRPIX%d' % _id]) -
                             1.) * _step
            return Axis(
                _get_meta(_header, ['CTYPE%d' % _id], default='Axis%d' % _id),
                _start,
                _step,
                Unit(_get_meta(_header, ['CUNIT%d' % _id])),
            )
예제 #4
0
def _interp_nearest(obj, values, axis, repna):
    """ "nearest" neighbour interpolation
    """
    ax = obj.axes[axis]
    pos = obj.dims.index(ax.name)
    assert ax.dtype is not np.dtype(
        'O'), "interpolation only for non-object types"

    indices = np.zeros_like(values, dtype=int)
    mask = np.zeros_like(values, dtype=bool)

    for i, x in enumerate(values):
        res = _locate_nearest(ax, x)
        if res is None:
            if repna:
                mask[i] = True
                continue
            else:
                raise IndexError("value not found: {}".format(x))
            continue

        indices[i], _ = res

    # sample nearest neighbors
    result = obj.take(indices, axis=pos, indexing="position")
    result.put(np.nan,
               np.where(mask)[0],
               axis=pos,
               indexing="position",
               convert=True,
               inplace=True)
    result.axes[pos] = Axis(values, ax.name)  # update axis

    return result
예제 #5
0
    def from_pandas(cls, data, dims=None):
        """ Initialize a DimArray from pandas
        data: pandas object (Series, DataFrame, Panel, Panel4D)
        dims, optional: dimension (axis) names, otherwise look at ax.name for ax in data.axes

        >>> import pandas as pd
        >>> s = pd.Series([3,5,6], index=['a','b','c'])
        >>> s.index.name = 'dim0'
        >>> DimArray.from_pandas(s)
        dimarray: 3 non-null elements (0 null)
        dimensions: 'dim0'
        0 / dim0 (3): a to c
        array([3, 5, 6])

        Also work with Multi-Index
        >>> panel = pd.Panel(np.arange(2*3*4).reshape(2,3,4))
        >>> b = panel.to_frame() # pandas' method to convert Panel to DataFrame via MultiIndex
        >>> DimArray.from_pandas(b)    # doctest: +SKIP
        dimarray: 24 non-null elements (0 null)
        dimensions: 'major,minor', 'x1'
        0 / major,minor (12): (0, 0) to (2, 3)
        1 / x1 (2): 0 to 1
        ...  
        """
        try:
            import pandas as pd
        except ImportError:
            raise ImportError("pandas module is required to use this method")

        axisnames = []
        axes = []
        for i, ax in enumerate(data.axes):

            # axis name
            name = ax.name
            if dims is not None: name = dims[i]
            if name is None: name = 'x%i' % (i)

            # Multi-Index: make a Grouped Axis object
            if isinstance(ax, pd.MultiIndex):

                # level names
                names = ax.names
                for j, nm in enumerate(names):
                    if nm is None:
                        names[j] = '%s_%i' % (name, j)

                miaxes = Axes.from_arrays(ax.levels, dims=names)
                axis = GroupedAxis(*miaxes)

            # Index: Make a simple Axis
            else:
                axis = Axis(ax.values, name)

            axes.append(axis)

        #axisnames, axes = zip(*[(ax.name, ax.values) for ax in data.axes])

        return cls(data.values, axes=axes)
예제 #6
0
def stack(arrays, axis, keys=None, align=False):
    """ stack arrays along a new dimension (raise error if already existing)

    parameters:
    ----------
    arrays: sequence or dict of arrays
    axis: str, new dimension along which to stack the array 
    keys, optional: stack axis values, useful if array is a sequence, or a non-ordered dictionary
    align, optional: if True, align axes prior to stacking (Default to False)

    returns:
    --------
    DimArray: joint array

    Sea Also:
    ---------
    concatenate: join arrays along an existing dimension

    Examples:
    ---------
    >>> a = DimArray([1,2,3])
    >>> b = DimArray([11,22,33])
    >>> stack([a, b], axis='stackdim', keys=['a','b'])
    dimarray: 6 non-null elements (0 null)
    dimensions: 'stackdim', 'x0'
    0 / stackdim (2): a to b
    1 / x0 (3): 0 to 2
    array([[ 1,  2,  3],
           [11, 22, 33]])
    """
    # make a sequence of arrays
    arrays, keys = _check_stack_args(arrays, keys)

    for a in arrays: 
        if not is_DimArray(a): raise TypeError('can only stack DimArray instances')

    # make sure the stacking dimension is OK (new)
    dims = get_dims(*arrays)
    axis = _check_stack_axis(axis, dims)

    # re-index axes if needed
    if align:
	arrays = align_axes(*arrays)

    # make it a numpy array
    data = [a.values for a in arrays]
    data = np.array(data)

    # new axis
    newaxis = Axis(keys, axis)

    # find common axes
    try: 
	axes = _get_axes(*arrays)
    except ValueError, msg: 
	if 'axes are not aligned' in repr(msg):
	    msg = 'axes are not aligned\n ==> Try passing `align=True`' 
	raise ValueError(msg)
예제 #7
0
    def __init__(self,
                 x_scale=None,
                 y_scale=None,
                 mark=None,
                 width=None,
                 height=None):
        if x_scale:
            self.x_scale = x_scale
        else:
            self.x_scale = Scale(name='x',
                                 range='width',
                                 type='ordinal',
                                 domain=DataRef(data='table', field='data.x'))

        if y_scale:
            self.y_scale = y_scale
        else:
            self.y_scale = Scale(name='y',
                                 range='height',
                                 type='linear',
                                 nice=True,
                                 domain=DataRef(data='table', field='data.y'))

        if mark:
            self.mark = mark
        else:
            self.mark = Mark(
                type='rect',
                from_=MarkRef(data='table'),
                properties=MarkProperties(
                    enter=PropertySet(x=ValueRef(scale='x', field='data.x'),
                                      y=ValueRef(scale='y', field='data.y'),
                                      width=ValueRef(scale='x',
                                                     band=True,
                                                     offset=-1),
                                      y2=ValueRef(scale='y', value=0)),
                    update=PropertySet(fill=ValueRef(value='steelblue'))))

        self.width = width or 400
        self.height = height or 200
        self.padding = {'top': 10, 'left': 30, 'bottom': 20, 'right': 10}
        self.x_axis = Axis(type='x', scale='x')
        self.y_axis = Axis(type='y', scale='y')
예제 #8
0
def concatenate_axes(axes):
    """ concatenate Axis objects

    axes: list of Axis objects

    >>> a = Axis([1,2,3],'x0')
    >>> b = Axis([5,6,7],'x0')
    >>> ax = concatenate_axes((a, b))
    >>> ax.name
    'x0'
    >>> ax.values
    array([1, 2, 3, 5, 6, 7])
    """
    #assert np.iterable(axes) and axes
    #if not isinstance(axes[0], Axis): raise TypeError()
    if len({ax.name for ax in axes}) != 1: 
        print axes
        raise ValueError("axis names differ!")
    values = np.concatenate([ax.values for ax in axes])
    return Axis(values, axes[0].name)
예제 #9
0
        def _get_adjusted_axis(_axis, _index, _key):
            start = _axis.start
            start_index = _key[_index].start
            if not (start_index is None or start_index == 0):
                if start_index < 0:
                    start_index = old_shape[_index] + start_index
                start = start + start_index * _axis.step

            step = _axis.step
            step_index = _key[_index].step
            if not (step_index is None or step_index == 1):
                if step_index < 0:
                    # Oh, this is more complex than it seems, as it affects
                    # start and stop values, too.
                    # We'll postpone it for now ; add a test case and hack away!
                    raise NotImplementedError(
                        "Negative steps are not supported at the moment. "
                        "Make a request or add support for them yourself!")
                step = step * step_index

            return Axis(_axis.name, start, step, _axis.unit)
예제 #10
0
def _interp_linear(obj, newindices, axis, repna):
    """ linearly interpolate a dimarray along an axis
    """
    ax = obj.axes[axis]
    pos = obj.dims.index(ax.name)
    assert ax.dtype is not np.dtype(
        'O'), "interpolation only for non-object types"

    i0 = np.zeros_like(newindices, dtype=int)
    i1 = np.zeros_like(newindices, dtype=int)
    w1 = np.empty_like(newindices, dtype=float)
    w1.fill(np.nan)

    for i, x in enumerate(newindices):
        res = _locate_bounds(ax, x)
        if res is None:
            if repna:
                continue
            else:
                raise IndexError("value not found: {}".format(x))
            continue

        i0[i], i1[i], w1[i] = res

    # sample nearest neighbors
    v0 = obj.take(i0, axis=pos, indexing="position")
    v1 = obj.take(i1, axis=pos, indexing="position")

    # result as weighted sum
    if not hasattr(v0, 'values'):  # scalar
        return v0 * (1 - w1) + v1 * w1
    else:
        newvalues = v0.values * (1 - w1) + v1.values * w1

    axes = obj.axes.copy()
    axes[pos] = Axis(newindices, ax.name)  # new axis
    return obj._constructor(newvalues, axes, **obj._metadata)
예제 #11
0
def _take_broadcast(a, indices):
    """ broadcast array-indices & integers, numpy's classical

    Examples:
    ---------
    >>> a = da.zeros(shape=(3,4,5,6))
    >>> a[:,[0, 1],:,2].shape
    (2, 3, 5)
    >>> a[:,[0, 1],2,:].shape
    (3, 2, 6)
    """
    # new values
    newval = a.values[indices]

    # if the new values is a scalar, then just return it
    if np.isscalar(newval):
        return newval

    # new axes: broacast indices (should do the same as above, since integers are just broadcast)
    indices2 = broadcast_indices(indices)
    # assert np.all(newval == a.values[indices2])

    # make a multi-axis with tuples
    is_array2 = np.array([np.iterable(ix) for ix in indices2])
    nb_array2 = is_array2.sum()

    # If none or one array is present, easy
    if nb_array2 <= 1:
        newaxes = [
            a.axes[i][ix] for i, ix in enumerate(indices)
            if not np.isscalar(ix)
        ]  # indices or indices2, does not matter

    # else, finer check needed
    else:
        # same stats but on original indices
        is_array = np.array([np.iterable(ix) for ix in indices])
        array_ix_pos = np.where(is_array)[0]

        # Determine where the axis will be inserted
        # - need to consider the integers as well (broadcast as arrays)
        # - if two indexed dimensions are not contiguous, new axis placed at first position...
        # a = zeros((3,4,5,6))
        # a[:,[1,2],:,0].shape ==> (2, 3, 5)
        # a[:,[1,2],0,:].shape ==> (3, 2, 6)
        array_ix_pos2 = np.where(is_array2)[0]
        if np.any(np.diff(array_ix_pos2) > 1
                  ):  # that mean, if two indexed dimensions are not contiguous
            insert = 0
        else:
            insert = array_ix_pos2[0]

        # Now determine axis value
        # ...if originally only one array was provided, use these values correspondingly
        if len(array_ix_pos) == 1:
            i = array_ix_pos[0]
            values = a.axes[i].values[indices[i]]
            name = a.axes[i].name

        # ...else use a list of tuples
        else:
            values = zip(
                *[a.axes[i].values[indices2[i]] for i in array_ix_pos])
            name = ",".join([a.axes[i].name for i in array_ix_pos])

        broadcastaxis = Axis(values, name)

        newaxes = Axes()
        for i, ax in enumerate(a.axes):

            # axis is already part of the broadcast axis: skip
            if is_array2[i]:
                continue

            else:
                newaxis = ax[indices2[i]]

                ## do not append axis if scalar
                #if np.isscalar(newaxis):
                #    continue

            newaxes.append(newaxis)

        # insert the right new axis at the appropriate position
        newaxes.insert(insert, broadcastaxis)

    return a._constructor(newval, newaxes, **a._metadata)
예제 #12
0
def take(obj,
         indices,
         axis=0,
         indexing="values",
         tol=TOLERANCE,
         keepdims=False,
         broadcast_arrays=True,
         mode='raise'):
    """ Retrieve values from a DimArray

    input:

        - self or obj: DimArray (ignore this parameter if accessed as bound method)
        - indices  : int or list or slice (single-dimensional indices)
                     or a tuple of those (multi-dimensional)
                     or `dict` (`axis name` : `indices`)
        - axis     : int or str
        - indexing     : "values" or "position" 
                     "position": use numpy-like position index
                     "values": indexing on axis values 
        - tol           : tolerance when looking for numerical values, e.g. to use nearest neighbor search, default `None`
        - keepdims : keep singleton dimensions
        - broadcast_arrays: True, by default, consistently with numpy
        
            if False, indexing with list or array of indices will behave like
            Matlab TM does, which means that it will index on each individual dimensions.
            (internally, any list or array of indices will be converted to a boolean index
            of values before slicing)

            If True, numpy rules are followed. Consider the following case:

            a = DimArray(np.zeros((4,4,4)))
            a[[0,0],[0,0],[0,0]]
            
            if broadcast_arrays is False, the result will be a 3-D array of shape 2 x 2 x 2
            if broadcast_arrays is True, the result will be a 1-D array of size 2

        - mode: "raise", "clip", "wrap"
            analogous to numpy.ndarray.take's mode parameter, only valid (for now) if indexing is 'position'

    output:
        - DimArray object or python built-in type, consistently with numpy slicing

    Examples:
    ---------

    >>> v = DimArray([[1,2,3],[4,5,6]], axes=[["a","b"], [10.,20.,30.]], dims=['d0','d1'], dtype=float) 
    >>> v
    dimarray: 6 non-null elements (0 null)
    dimensions: 'd0', 'd1'
    0 / d0 (2): a to b
    1 / d1 (3): 10.0 to 30.0
    array([[ 1.,  2.,  3.],
           [ 4.,  5.,  6.]])

    Indexing via axis values (default)
    >>> a = v[:,10]   # python slicing method
    >>> a
    dimarray: 2 non-null elements (0 null)
    dimensions: 'd0'
    0 / d0 (2): a to b
    array([ 1.,  4.])
    >>> b = v.take(10, axis=1)  # take, by axis position
    >>> c = v.take(10, axis='d1')  # take, by axis name
    >>> d = v.take({'d1':10})  # take, by dict {axis name : axis values}
    >>> (a==b).all() and (a==c).all() and (a==d).all()
    True

    Indexing via integer index (indexing="position" or `ix` property)
    >>> np.all(v.ix[:,0] == v[:,10])
    True
    >>> np.all(v.take(0, axis="d1", indexing="position") == v.take(10, axis="d1"))
    True

    Multi-dimensional indexing
    >>> v["a", 10]  # also work with string axis
    1.0
    >>> v.take(('a',10))  # multi-dimensional, tuple
    1.0
    >>> v.take({'d0':'a', 'd1':10})  # dict-like arguments
    1.0

    Take a list of indices
    >>> a = v[:,[10,20]] # also work with a list of index
    >>> a
    dimarray: 4 non-null elements (0 null)
    dimensions: 'd0', 'd1'
    0 / d0 (2): a to b
    1 / d1 (2): 10.0 to 20.0
    array([[ 1.,  2.],
           [ 4.,  5.]])
    >>> b = v.take([10,20], axis='d1')
    >>> np.all(a == b)
    True

    Take a slice:
    >>> c = v[:,10:20] # axis values: slice includes last element
    >>> c
    dimarray: 4 non-null elements (0 null)
    dimensions: 'd0', 'd1'
    0 / d0 (2): a to b
    1 / d1 (2): 10.0 to 20.0
    array([[ 1.,  2.],
           [ 4.,  5.]])
    >>> d = v.take(slice(10,20), axis='d1') # `take` accepts `slice` objects
    >>> np.all(c == d)
    True
    >>> v.ix[:,0:1] # integer position: does *not* include last element
    dimarray: 2 non-null elements (0 null)
    dimensions: 'd0', 'd1'
    0 / d0 (2): a to b
    1 / d1 (1): 10.0 to 10.0
    array([[ 1.],
           [ 4.]])

    Keep dimensions 
    >>> a = v[["a"]]
    >>> b = v.take("a",keepdims=True)
    >>> np.all(a == b)
    True

    tolerance parameter to achieve "nearest neighbour" search
    >>> v.take(12, axis="d1", tol=5)
    dimarray: 2 non-null elements (0 null)
    dimensions: 'd0'
    0 / d0 (2): a to b
    array([ 1.,  4.])

    # Matlab like multi-indexing
    >>> v = DimArray(np.arange(2*3*4).reshape(2,3,4))
    >>> v.box[[0,1],:,[0,0,0]].shape
    (2, 3, 3)
    >>> v.box[[0,1],:,[0,0]].shape # here broadcast_arrays = False
    (2, 3, 2)
    >>> v[[0,1],:,[0,0]].shape # that is traditional numpy, with broadcasting on same shape
    (2, 3)
    >>> v.values[[0,1],:,[0,0]].shape # a proof of it
    (2, 3)

    >>> a = DimArray(np.arange(2*3).reshape(2,3))

    >>> a[a > 3] # FULL ARRAY: return a numpy array in n-d case (at least for now)
    dimarray: 2 non-null elements (0 null)
    dimensions: 'x0,x1'
    0 / x0,x1 (2): (1, 1) to (1, 2)
    array([4, 5])

    >>> a[a.x0 > 0] # SINGLE AXIS: only first axis
    dimarray: 3 non-null elements (0 null)
    dimensions: 'x0', 'x1'
    0 / x0 (1): 1 to 1
    1 / x1 (3): 0 to 2
    array([[3, 4, 5]])

    >>> a[:, a.x1 > 0] # only second axis 
    dimarray: 4 non-null elements (0 null)
    dimensions: 'x0', 'x1'
    0 / x0 (2): 0 to 1
    1 / x1 (2): 1 to 2
    array([[1, 2],
           [4, 5]])

    >>> a.box[a.x0 > 0, a.x1 > 0]  # AXIS-BASED (need `box` to prevent broadcasting)
    dimarray: 2 non-null elements (0 null)
    dimensions: 'x0', 'x1'
    0 / x0 (1): 1 to 1
    1 / x1 (2): 1 to 2
    array([[4, 5]])

    Ommit `indices` parameter when putting a DimArray
    >>> a = DimArray([0,1,2,3,4], ['a','b','c','d','e'])
    >>> b = DimArray([5,6], ['c','d'])
    >>> a.put(b)
    dimarray: 5 non-null elements (0 null)
    dimensions: 'x0'
    0 / x0 (5): a to e
    array([0, 1, 5, 6, 4])

    Ellipsis (only one supported)
    >>> a = DimArray(np.arange(2*3*4*5).reshape(2,3,4,5))
    >>> a[0,...,0].shape
    (3, 4)
    >>> a[...,0,0].shape
    (2, 3)
    """
    assert indexing in ("position",
                        "values"), "invalid mode: " + repr(indexing)

    # SPECIAL CASE: full scale boolean array
    if obj.ndim > 1 and is_boolean_index(indices, obj.shape):
        indices = np.where(np.asarray(indices))
        newvalues = obj.values[indices]

        # return a scalar if size is 1
        if np.size(newvalues) <= 1:
            return newvalues

        # or return a DimArray with axes as tuple
        newaxisvalues = zip(
            *[obj.axes[i].values[ii] for i, ii in enumerate(indices)])
        newaxisname = ",".join(obj.dims)
        newaxis = Axis(newaxisvalues, newaxisname)
        newobj = obj._constructor(newvalues, [newaxis], **obj._metadata)
        return newobj

    indices = _fill_ellipsis(indices, obj.ndim)

    try:
        indices_numpy = obj.axes.loc(indices,
                                     axis=axis,
                                     position_index=(indexing == "position"),
                                     keepdims=keepdims,
                                     tol=tol)
    except IndexError, msg:
        raise IndexError(msg)
예제 #13
0
def diff(obj, axis=-1, scheme="backward", keepaxis=False, n=1):
    """ Analogous to numpy's diff

    Calculate the n-th order discrete difference along given axis.

    The first order difference is given by ``out[n] = a[n+1] - a[n]`` along
    the given axis, higher order differences are calculated by using `diff`
    recursively.

    Parameters
    ----------
    {axis}

    scheme: str, determines the values of the resulting axis
            "forward" : diff[i] = x[i+1] - x[i]
            "backward": diff[i] = x[i] - x[i-1]
            "centered": diff[i] = x[i+1/2] - x[i-1/2]
            default is "backward"

    keepaxis: bool, if True, keep the initial axis by padding with NaNs
              Only compatible with "forward" or "backward" differences

    n : int, optional
        The number of times values are differenced.

    Returns
    -------
    diff : DimArray
        The `n` order differences. The shape of the output is the same as `a`
        except along `axis` where the dimension is smaller by `n`.

    Examples:
    ---------

    Create some example data
    >>> v = da.DimArray([1,2,3,4], ('time', np.arange(1950,1954)), dtype=float)
    >>> s = v.cumsum()
    >>> s 
    dimarray: 4 non-null elements (0 null)
    dimensions: 'time'
    0 / time (4): 1950 to 1953
    array([  1.,   3.,   6.,  10.])

    `diff` reduces axis size by one, by default
    >>> s.diff()
    dimarray: 3 non-null elements (0 null)
    dimensions: 'time'
    0 / time (3): 1951 to 1953
    array([ 2.,  3.,  4.])

    The `keepaxis=` parameter fills array with `nan` where necessary to keep the axis unchanged. Default is backward differencing: `diff[i] = v[i] - v[i-1]`.
    >>> s.diff(keepaxis=True)
    dimarray: 3 non-null elements (1 null)
    dimensions: 'time'
    0 / time (4): 1950 to 1953
    array([ nan,   2.,   3.,   4.])

    But other schemes are available to control how the new axis is defined: `backward` (default), `forward` and even `centered`
    >>> s.diff(keepaxis=True, scheme="forward") # diff[i] = v[i+1] - v[i]
    dimarray: 3 non-null elements (1 null)
    dimensions: 'time'
    0 / time (4): 1950 to 1953
    array([  2.,   3.,   4.,  nan])

    The `keepaxis=True` option is invalid with the `centered` scheme, since every axis value is modified by definition:
    >>> s.diff(axis='time', scheme='centered')
    dimarray: 3 non-null elements (0 null)
    dimensions: 'time'
    0 / time (3): 1950.5 to 1952.5
    array([ 2.,  3.,  4.])
    """
    # If `axis` is None (operations on the flattened array), just returns the numpy array
    if axis is None:
        return np.diff(obj.values, n=n, axis=None)

    # Deal with `axis` parameter, whether `int`, `str` or `tuple`
    # possibly grouping dimensions if axis is tuple
    obj, idx, name = _deal_with_axis(obj, axis)

    # Recursive call if n > 1
    if n > 1:
        obj = obj.diff(n=n - 1, axis=idx, scheme=scheme, keepaxis=keepaxis)
        n = 1

    # n = 1
    assert n == 1, "n must be integer greater or equal to one"

    # Compute differences
    result = np.diff(obj.values, axis=idx)

    # Old axis along diff
    oldaxis = obj.axes[idx]

    # forward differencing
    if scheme == "forward":

        # keep axis: pad last element with NaNs
        if keepaxis:
            result = _append_nans(result, axis=idx)
            newaxis = oldaxis.copy()

        # otherwise just shorten the axis
        else:
            newaxis = oldaxis[:-1]

    elif scheme == "backward":

        # keep axis: pad first element with NaNs
        if keepaxis:
            result = _append_nans(result, axis=idx, first=True)
            newaxis = oldaxis.copy()

        # otherwise just shorten the axis
        else:
            newaxis = oldaxis[1:]

    elif scheme == "centered":

        # keep axis: central difference + forward/backward diff at the edges
        if keepaxis:
            #indices = range(oldaxis.size)
            raise ValueError(
                "keepaxis=True is not compatible with centered differences")
            #central = obj.values.take(indices[2:], axis=idx) \
            #        -  obj.values.take(indices[:-2], axis=idx)
            #start = obj.values.take([1], axis=idx) \
            #        -  obj.values.take([0], axis=idx)
            #end = obj.values.take([-1], axis=idx) \
            #        -  obj.values.take([-2], axis=idx)
            #result = np.concatenate((start, central, end), axis=idx)
            #newaxis = oldaxis.copy()

        else:
            axisvalues = 0.5 * (oldaxis.values[:-1] + oldaxis.values[1:])
            newaxis = Axis(axisvalues, name)

    else:
        raise ValueError(
            "scheme must be one of 'forward', 'backward', 'central', got {}".
            format(scheme))

    newaxes = obj.axes.copy()
    newaxes[idx] = newaxis
    newobj = obj._constructor(result, newaxes, **obj._metadata)

    return newobj