def create_job(config, cluster_id, workspace, experiment, job_name, image_name, command, number_of_vms=1): ''' Creates job ''' input_directories = [ models.InputDirectory(id='SCRIPT', path='$AZ_BATCHAI_MOUNT_ROOT/{0}/{1}'.format( config.fileshare_mount_point, job_name)), models.InputDirectory(id='DATASET', path='$AZ_BATCHAI_MOUNT_ROOT/{0}/{1}'.format( config.fileshare_mount_point, 'data')) ] std_output_path_prefix = "$AZ_BATCHAI_MOUNT_ROOT/{0}".format( config.fileshare_mount_point) output_directories = [ models.OutputDirectory(id='MODEL', path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format( config.fileshare_mount_point), path_suffix="models"), models.OutputDirectory(id='NOTEBOOKS', path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format( config.fileshare_mount_point), path_suffix="notebooks") ] parameters = models.JobCreateParameters( location=config.location, cluster=models.ResourceId(id=cluster_id), node_count=number_of_vms, input_directories=input_directories, std_out_err_path_prefix=std_output_path_prefix, output_directories=output_directories, container_settings=models.ContainerSettings( image_source_registry=models.ImageSourceRegistry( image=image_name)), custom_toolkit_settings=models.CustomToolkitSettings( command_line=command)) client = client_from(config) _ = client.jobs.create(config.group_name, workspace, experiment, job_name, parameters)
def create_custom_job(client, resource_group, cluster_id, job_name, nodes, cmd, job_preparation_cmd=None, container=None): """Creates custom toolkit job :param BatchAIManagementClient client: client instance. :param str resource_group: resource group name. :param str cluster_id: resource Id of the cluster. :param str job_name: job name. :param int nodes: number of nodes to execute the job. :param str cmd: command line to run. :param str or None job_preparation_cmd: Job preparation command line. :param models.ContainerSettings or None container: container settings to run the job. :return models.Job: the created job. """ job_preparation = None if job_preparation_cmd: job_preparation = models.JobPreparation( command_line=job_preparation_cmd) client.experiments.create(resource_group, Helpers.DEFAULT_WORKSPACE_NAME, Helpers.DEFAULT_EXPERIMENT_NAME).result() return client.jobs.create( resource_group, Helpers.DEFAULT_WORKSPACE_NAME, Helpers.DEFAULT_EXPERIMENT_NAME, job_name, parameters=models.JobCreateParameters( cluster=models.ResourceId(id=cluster_id), node_count=nodes, std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format( Helpers.AZURE_FILES_MOUNTING_PATH), output_directories=[ models.OutputDirectory( id=Helpers.JOB_OUTPUT_DIRECTORY_ID, path_prefix=Helpers.JOB_OUTPUT_DIRECTORY_PATH, path_suffix="files") ], input_directories=[ models.InputDirectory( id='INPUT', path='$AZ_BATCHAI_MOUNT_ROOT/{0}/input'.format( Helpers.AZURE_FILES_MOUNTING_PATH)) ], container_settings=container, job_preparation=job_preparation, custom_toolkit_settings=models.CustomToolkitSettings( command_line=cmd))).result()
def submit_job(config, pretrained_model_type, retraining_type, output_model_name, num_epochs): ''' Defines and submits a job. Does not check for completion. ''' client = get_client(config) job_name = 'job{}'.format( datetime.datetime.utcnow().strftime('%m_%d_%H_%M_%S')) cluster = client.clusters.get(config.bait_resource_group_name, config.bait_cluster_name) # Define the command line arguments to the retraining script command_line_args = '--input_dir $AZ_BATCHAI_INPUT_TRAININGDATA ' + \ '--validation_dir $AZ_BATCHAI_INPUT_VALIDATIONDATA ' + \ '--output_dir $AZ_BATCHAI_OUTPUT_MODEL ' + \ '--num_epochs {} '.format(num_epochs) + \ '--retraining_type {} '.format(retraining_type) + \ '--model_type {} '.format(pretrained_model_type) + \ '--model_filename $AZ_BATCHAI_INPUT_PRETRAINEDMODELS/' if pretrained_model_type == 'alexnet': command_line_args += 'AlexNet.model' elif pretrained_model_type == 'resnet18': command_line_args += 'ResNet_18.model' # Define the job cntk_settings = tm.CNTKsettings( language_type='python', python_script_file_path='$AZ_BATCHAI_INPUT_SCRIPT/' + 'retrain_model_distributed.py', command_line_args=command_line_args, process_count=config.bait_vms_per_job) # NC6s -- one GPU per VM job_create_params = tm.job_create_parameters.JobCreateParameters( location=config.bait_region, cluster=tm.ResourceId(cluster.id), node_count=config.bait_vms_per_job, std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/afs', output_directories=[ tm.OutputDirectory(id='MODEL', path_prefix='$AZ_BATCHAI_MOUNT_ROOT/afs') ], input_directories=[ tm.InputDirectory(id='SCRIPT', path='$AZ_BATCHAI_MOUNT_ROOT/afs/scripts'), tm.InputDirectory( id='PRETRAINEDMODELS', path='$AZ_BATCHAI_MOUNT_ROOT/afs/pretrainedmodels'), tm.InputDirectory( id='TRAININGDATA', path='$AZ_BATCHAI_MOUNT_ROOT/nfs/training_images'), tm.InputDirectory( id='VALIDATIONDATA', path='$AZ_BATCHAI_MOUNT_ROOT/nfs/validation_images') ], cntk_settings=cntk_settings) # Submit the job job = client.jobs.create( resource_group_name=config.bait_resource_group_name, job_name=job_name, parameters=job_create_params) return (job_name)
DiscreteParameter(parameter_name="BATCH_SIZE", values=[8, 16, 32]), DiscreteParameter(parameter_name="T", values=[72, 168, 336]), DiscreteParameter(parameter_name="LEARNING_RATE", values=[0.01, 0.001, 0.0001]), DiscreteParameter(parameter_name="ALPHA", values=[0.1, 0.001, 0]) ] parameters = ParameterSweep(param_specs) # create a template for Batch AI job jcp = models.JobCreateParameters( cluster=models.ResourceId(id=cluster.id), node_count=1, std_out_err_path_prefix='$AZ_BATCHAI_JOB_MOUNT_ROOT/logs', output_directories=[ models.OutputDirectory(id='ALL', path_prefix='$AZ_BATCHAI_JOB_MOUNT_ROOT/output') ], custom_toolkit_settings=models.CustomToolkitSettings( command_line= 'python $AZ_BATCHAI_JOB_MOUNT_ROOT/resources/scripts/FF_multi_step_multivariate.py \ --scriptdir $AZ_BATCHAI_JOB_MOUNT_ROOT/resources/scripts \ --datadir $AZ_BATCHAI_JOB_MOUNT_ROOT/resources/data \ --outdir $AZ_BATCHAI_OUTPUT_ALL \ -l {0} -n {1} -b {2} -T {3} -r {4} -a {5}'.format( parameters['LATENT_DIM'], parameters['HIDDEN_LAYERS'], parameters['BATCH_SIZE'], parameters['T'], parameters['LEARNING_RATE'], parameters['ALPHA'])), container_settings=models.ContainerSettings( image_source_registry=models.ImageSourceRegistry( image=cfg['docker_image'])), mount_volumes=models.MountVolumes(azure_file_shares=[
location='northeurope', cluster=models.ResourceId(id=cluster.id), # The number of VMs in the cluster to use node_count=1, # Override the path where the std out and std err files will be written to. # In this case we will write these out to an Azure Files share std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format(relative_mount_point), input_directories=[models.InputDirectory( id='SAMPLE', path='$AZ_BATCHAI_MOUNT_ROOT/{0}/data'.format(relative_mount_point))], # Specify directories where files will get written to output_directories=[models.OutputDirectory( id='MODEL', path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format(relative_mount_point), path_suffix="Models")], # Container configuration container_settings=models.ContainerSettings( image_source_registry=models.ImageSourceRegistry(image='microsoft/cntk:2.1-gpu-python3.5-cuda8.0-cudnn6.0')), # Toolkit specific settings cntk_settings = models.CNTKsettings( python_script_file_path='$AZ_BATCHAI_INPUT_SAMPLE/ConvNet_MNIST.py', command_line_args='$AZ_BATCHAI_INPUT_SAMPLE $AZ_BATCHAI_OUTPUT_MODEL') ) # Create the job client.jobs.create(resource_group_name, job_name, parameters).result()
def test_job_level_mounting(self, resource_group, location, cluster, storage_account, storage_account_key): """Tests if it's possible to mount external file systems for a job.""" job_name = 'job' # Create file share and container to mount on the job level if storage_account.name != FAKE_STORAGE.name: files = FileService(storage_account.name, storage_account_key) files.create_share('jobshare', fail_on_exist=False) blobs = BlockBlobService(storage_account.name, storage_account_key) blobs.create_container('jobcontainer', fail_on_exist=False) job = self.client.jobs.create( resource_group.name, job_name, parameters=models.JobCreateParameters( location=location, cluster=models.ResourceId(id=cluster.id), node_count=1, mount_volumes=models. MountVolumes(azure_file_shares=[ models.AzureFileShareReference( account_name=storage_account.name, azure_file_url='https://{0}.file.core.windows.net/{1}'. format(storage_account.name, 'jobshare'), relative_mount_path='job_afs', credentials=models.AzureStorageCredentialsInfo( account_key=storage_account_key), ) ], azure_blob_file_systems=[ models.AzureBlobFileSystemReference( account_name=storage_account.name, container_name='jobcontainer', relative_mount_path='job_bfs', credentials=models. AzureStorageCredentialsInfo( account_key=storage_account_key), ) ]), # Put standard output on cluster level AFS to check that the job has access to it. std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format( AZURE_FILES_MOUNTING_PATH), # Create two output directories on job level AFS and blobfuse. output_directories=[ models.OutputDirectory( id='OUTPUT1', path_prefix='$AZ_BATCHAI_JOB_MOUNT_ROOT/job_afs'), models.OutputDirectory( id='OUTPUT2', path_prefix='$AZ_BATCHAI_JOB_MOUNT_ROOT/job_bfs') ], # Check that the job preparation has access to job level file systems. job_preparation=models.JobPreparation( command_line= 'echo afs > $AZ_BATCHAI_OUTPUT_OUTPUT1/prep_afs.txt; ' 'echo bfs > $AZ_BATCHAI_OUTPUT_OUTPUT2/prep_bfs.txt; ' 'echo done'), # Check that the job has access to job custom_toolkit_settings=models.CustomToolkitSettings( command_line= 'echo afs > $AZ_BATCHAI_OUTPUT_OUTPUT1/job_afs.txt; ' 'echo bfs > $AZ_BATCHAI_OUTPUT_OUTPUT2/job_bfs.txt; ' 'mkdir $AZ_BATCHAI_OUTPUT_OUTPUT1/afs; ' 'echo afs > $AZ_BATCHAI_OUTPUT_OUTPUT1/afs/job_afs.txt; ' 'mkdir $AZ_BATCHAI_OUTPUT_OUTPUT2/bfs; ' 'echo bfs > $AZ_BATCHAI_OUTPUT_OUTPUT2/bfs/job_bfs.txt; ' 'echo done'))).result() self.assertEqual( wait_for_job_completion(self.is_live, self.client, resource_group.name, job.name, MINUTE), models.ExecutionState.succeeded) job = self.client.jobs.get(resource_group.name, job.name) # Assert job and job prep standard output is populated on cluster level filesystem assert_job_files_are( self, self.client, resource_group.name, job.name, STANDARD_OUTPUT_DIRECTORY_ID, { u'stdout.txt': u'done\n', u'stderr.txt': u'', u'stdout-job_prep.txt': u'done\n', u'stderr-job_prep.txt': u'' }) # Assert files are generated on job level AFS assert_job_files_are(self, self.client, resource_group.name, job.name, 'OUTPUT1', { u'job_afs.txt': u'afs\n', u'prep_afs.txt': u'afs\n', u'afs': None }) # Assert files are generated on job level blobfuse assert_job_files_are(self, self.client, resource_group.name, job.name, 'OUTPUT2', { u'job_bfs.txt': u'bfs\n', u'prep_bfs.txt': u'bfs\n', u'bfs': None }) # Assert subfolders are available via API assert_job_files_in_path_are(self, self.client, resource_group.name, job.name, 'OUTPUT1', 'afs', {u'job_afs.txt': u'afs\n'}) assert_job_files_in_path_are(self, self.client, resource_group.name, job.name, 'OUTPUT2', 'bfs', {u'job_bfs.txt': u'bfs\n'}) # Assert that we can access the output files created on job level mount volumes directly in storage using path # segment returned by the server. if storage_account.name != FAKE_STORAGE.name: files = FileService(storage_account.name, storage_account_key) self.assertTrue( files.exists( 'jobshare', job.job_output_directory_path_segment + '/' + OUTPUT_DIRECTORIES_FOLDER_NAME, 'job_afs.txt')) blobs = BlockBlobService(storage_account.name, storage_account_key) self.assertTrue( blobs.exists( 'jobcontainer', job.job_output_directory_path_segment + '/' + OUTPUT_DIRECTORIES_FOLDER_NAME + '/job_bfs.txt')) # After the job is done the filesystems should be unmounted automatically, check this by submitting a new job. checker = self.client.jobs.create( resource_group.name, 'checker', parameters=models.JobCreateParameters( location=location, cluster=models.ResourceId(id=cluster.id), node_count=1, std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'.format( AZURE_FILES_MOUNTING_PATH), custom_toolkit_settings=models.CustomToolkitSettings( command_line='echo job; df | grep -E "job_bfs|job_afs"')) ).result() # Check the job failed because there are not job level mount volumes anymore self.assertEqual( wait_for_job_completion(self.is_live, self.client, resource_group.name, checker.name, MINUTE), models.ExecutionState.failed) # Check that the cluster level AFS was still mounted assert_job_files_are(self, self.client, resource_group.name, checker.name, STANDARD_OUTPUT_DIRECTORY_ID, { u'stdout.txt': u'job\n', u'stderr.txt': u'' })