class ActiveLearning(torch.nn.Module):
    def __init__(self, exp_dict):
        super().__init__()
        self.backbone = models.vgg16(
            pretrained=exp_dict["imagenet_pretraining"], progress=True)
        num_ftrs = self.backbone.classifier[-1].in_features
        self.backbone.classifier[-1] = torch.nn.Linear(num_ftrs,
                                                       exp_dict["num_classes"])
        self.backbone = patch_module(self.backbone)
        self.initial_weights = deepcopy(self.backbone.state_dict())
        self.backbone.cuda()

        self.batch_size = exp_dict['batch_size']
        self.calibrate = exp_dict.get('calibrate', False)
        self.learning_epoch = exp_dict['learning_epoch']
        self.optimizer = torch.optim.SGD(self.backbone.parameters(),
                                         lr=exp_dict['lr'],
                                         weight_decay=5e-4,
                                         momentum=0.9,
                                         nesterov=True)

        self.criterion = CrossEntropyLoss()
        shuffle_prop = exp_dict.get('shuffle_prop', 0.0)
        max_sample = -1
        self.heuristic = get_heuristic(exp_dict['heuristic'],
                                       shuffle_prop=shuffle_prop)
        self.wrapper = ModelWrapper(self.backbone, criterion=self.criterion)
        self.wrapper.add_metric(
            'cls_report',
            lambda: ClassificationReport(exp_dict["num_classes"]))
        self.wrapper.add_metric('accuracy', lambda: Accuracy())
        self.loop = ActiveLearningLoop(None,
                                       self.wrapper.predict_on_dataset,
                                       heuristic=self.heuristic,
                                       ndata_to_label=exp_dict['query_size'],
                                       batch_size=self.batch_size,
                                       iterations=exp_dict['iterations'],
                                       use_cuda=True,
                                       max_sample=max_sample)

        self.calib_set = get_dataset('calib', exp_dict['dataset'])
        self.valid_set = get_dataset('val', exp_dict['dataset'])
        self.calibrator = DirichletCalibrator(
            self.wrapper,
            exp_dict["num_classes"],
            lr=0.001,
            reg_factor=exp_dict['reg_factor'],
            mu=exp_dict['mu'])

        self.active_dataset = None
        self.active_dataset_settings = None

    def train_on_loader(self, loader: DataLoader):
        self.wrapper.load_state_dict(self.initial_weights)
        if self.active_dataset is None:
            self.active_dataset = loader.dataset
            if self.active_dataset_settings is not None:
                self.active_dataset.load_state_dict(
                    self.active_dataset_settings)
            self.loop.dataset = self.active_dataset
        self.criterion.train()
        self.wrapper.train_on_dataset(self.active_dataset,
                                      self.optimizer,
                                      self.batch_size,
                                      epoch=self.learning_epoch,
                                      use_cuda=True)

        metrics = self.wrapper.metrics
        return self._format_metrics(metrics, 'train')

    def val_on_loader(self, loader, savedir=None):
        val_data = loader.dataset
        self.loop.step()
        self.criterion.eval()
        self.wrapper.test_on_dataset(val_data,
                                     batch_size=self.batch_size,
                                     use_cuda=True,
                                     average_predictions=20)
        metrics = self.wrapper.metrics
        mets = self._format_metrics(metrics, 'test')
        mets.update({'num_samples': len(self.active_dataset)})
        return mets

    def on_train_end(self, savedir, epoch):
        h5_path = pjoin(savedir, 'ckpt.h5')
        labelled = self.active_dataset.state_dict()['labelled']
        with h5py.File(h5_path, 'a') as f:
            if f'epoch_{epoch}' not in f:
                g = f.create_group(f'epoch_{epoch}')
                g.create_dataset('labelled', data=labelled.astype(np.bool))

    def _format_metrics(self, metrics, step):
        mets = {k: v.value for k, v in metrics.items() if step in k}
        mets_unpacked = {}
        for k, v in mets.items():
            if isinstance(v, float):
                mets_unpacked[k] = v
            elif isinstance(v, np.ndarray):
                mets_unpacked[k] = v.mean()
            else:
                mets_unpacked.update(
                    {f"{k}_{ki}": np.mean(vi)
                     for ki, vi in v.items()})
        return mets_unpacked

    def get_state_dict(self):
        state = {}
        state["model"] = self.backbone.state_dict()
        state["optimizer"] = self.optimizer.state_dict()
        if self.active_dataset is None:
            state['dataset'] = None
        else:
            state["dataset"] = self.active_dataset.state_dict()
        return state

    def set_state_dict(self, state_dict):
        self.backbone.load_state_dict(state_dict["model"])
        self.optimizer.load_state_dict(state_dict["optimizer"])
        self.active_dataset_settings = state_dict["dataset"]
        if self.active_dataset is not None:
            self.active_dataset.load_state_dict(self.active_dataset_settings)
예제 #2
0
def main():
    args = parse_args()
    use_cuda = torch.cuda.is_available()
    torch.backends.cudnn.benchmark = True
    random.seed(1337)
    torch.manual_seed(1337)
    if not use_cuda:
        print("warning, the experiments would take ages to run on cpu")

    hyperparams = vars(args)

    active_set, test_set = get_datasets(hyperparams["initial_pool"])

    heuristic = get_heuristic(hyperparams["heuristic"],
                              hyperparams["shuffle_prop"])
    criterion = CrossEntropyLoss()
    model = vgg16(pretrained=False, num_classes=10)
    weights = load_state_dict_from_url(
        "https://download.pytorch.org/models/vgg16-397923af.pth")
    weights = {k: v for k, v in weights.items() if "classifier.6" not in k}
    model.load_state_dict(weights, strict=False)

    # change dropout layer to MCDropout
    model = patch_module(model)

    if use_cuda:
        model.cuda()
    optimizer = optim.SGD(model.parameters(),
                          lr=hyperparams["lr"],
                          momentum=0.9)

    # Wraps the model into a usable API.
    model = ModelWrapper(model, criterion)

    logs = {}
    logs["epoch"] = 0

    # for prediction we use a smaller batchsize
    # since it is slower
    active_loop = ActiveLearningLoop(
        active_set,
        model.predict_on_dataset,
        heuristic,
        hyperparams.get("query_size", 1),
        batch_size=10,
        iterations=hyperparams["iterations"],
        use_cuda=use_cuda,
    )
    # We will reset the weights at each active learning step.
    init_weights = deepcopy(model.state_dict())

    for epoch in tqdm(range(args.epoch)):
        # Load the initial weights.
        model.load_state_dict(init_weights)
        model.train_on_dataset(
            active_set,
            optimizer,
            hyperparams["batch_size"],
            hyperparams["learning_epoch"],
            use_cuda,
        )

        # Validation!
        model.test_on_dataset(test_set, hyperparams["batch_size"], use_cuda)
        metrics = model.metrics
        should_continue = active_loop.step()
        if not should_continue:
            break

        val_loss = metrics["test_loss"].value
        logs = {
            "val": val_loss,
            "epoch": epoch,
            "train": metrics["train_loss"].value,
            "labeled_data": active_set.labelled,
            "Next Training set size": len(active_set),
        }
        print(logs)