# Create the model exp_no = 1 num_input_channels = num_string_inps num_LSTM_layers = [2, 2, 2, 2] num_LSTM_units = [[16, 16], [16, 16], [16, 16], [16, 16]] num_dense_layers = 2 num_dense_units = [10, 5] # Last dense units always has to be number of risk categories (5) learning_rate = 10**(-2) inp_optim = "Adam" reg_param = 0 batch_sz = 256 eps = 100 val_splt = 0 input_shapes = [] for i_inp in range(num_input_channels): input_shapes.append(encoded_col[i_inp].shape) #print(input_shapes[1][1]) model = back_end.create_model(num_input_channels, input_shapes, num_LSTM_layers, num_LSTM_units, num_dense_layers, num_dense_units, learning_rate, reg_param, inp_optim) back_end.train_model(batch_sz, eps, val_splt, model, input_list, output_list, exp_no)
# coding: utf-8 # In[1]: import os from os import sys, path sys.path.append(r'/home/saakaar/Desktop/Neural Networks/All_data') # In[2]: import back_end # In[3]: model=back_end.build_model(3,1,'adam','mse') # In[4]: model=back_end.train_model(252,25000,0.15,model)