def create_test_data_cycle( ) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]: flow_graph = FlowGraph() flow_graph.add_edge('A', 'B', 2.0, 0.5) flow_graph.add_edge('B', 'C', 0.7, 0.1) comp_graph = ComputationGraph() comp_graph.add_edge('A', 'B', 2.0, 0.5) comp_graph.add_edge('B', 'C', 0.7, 0.1) comp_graph.graph.nodes['A']['split'] = [False, False] comp_graph.graph.nodes['B']['split'] = [False, False] comp_graph.graph.nodes['C']['split'] = [False, False] subtest_cases: List[SubTestCase] = [] # Case 0 params = {'B': 5, 'C': 10} conflicts = {'B': {'C'}, 'C': {'B'}} combinations = {frozenset({'B'}), frozenset({'C'})} results = {('A', frozenset({'B'})): 2.5, ('A', frozenset({'C'})): 0.5} subtest_cases.append(SubTestCase(params, conflicts, combinations, results)) return flow_graph, comp_graph, subtest_cases
def create_test_data_star2( ) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]: flow_graph = FlowGraph() flow_graph.add_edge('A', 'B', None, None) flow_graph.add_edge('A', 'C', None, None) flow_graph.add_edge('A', 'D', None, None) flow_graph.add_edge('A', 'E', None, None) comp_graph = ComputationGraph() comp_graph.add_edge('A', 'B', None, 1.0) comp_graph.add_edge('A', 'C', None, 1.0) comp_graph.add_edge('A', 'D', None, 1.0) comp_graph.add_edge('A', 'E', None, 1.0) comp_graph.graph.nodes['A']['split'] = [False, False] comp_graph.graph.nodes['B']['split'] = [False, False] comp_graph.graph.nodes['C']['split'] = [False, False] comp_graph.graph.nodes['D']['split'] = [False, False] comp_graph.graph.nodes['E']['split'] = [False, False] subtest_cases: List[SubTestCase] = [] # Case 0 params = {'B': 5, 'C': 10, 'D': 8, 'E': 12} conflicts = {'B': set(), 'C': set(), 'D': set(), 'E': set()} combinations = {frozenset({'B', 'C', 'D', 'E'})} results = {('A', frozenset({'B', 'C', 'D', 'E'})): 35} subtest_cases.append(SubTestCase(params, conflicts, combinations, results)) return flow_graph, comp_graph, subtest_cases
def create_test_data_simple( ) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]: flow_graph = FlowGraph() flow_graph.add_edge('A', 'B', 2.0, None) flow_graph.add_edge('B', 'C', 0.7, None) flow_graph.add_edge('C', 'D', 0.1, None) flow_graph.add_edge('E', 'D', 0.1, None) comp_graph = ComputationGraph() comp_graph.add_edge('A', 'B', 2.0, 0.5) comp_graph.add_edge('B', 'C', 0.7, 1.4285714) comp_graph.add_edge('C', 'D', 0.1, None) comp_graph.add_edge('E', 'D', 0.1, None) comp_graph.graph.nodes['A']['split'] = [False, False] comp_graph.graph.nodes['B']['split'] = [False, False] comp_graph.graph.nodes['C']['split'] = [False, False] comp_graph.graph.nodes['D']['split'] = [False, False] comp_graph.graph.nodes['E']['split'] = [False, False] subtest_cases: List[SubTestCase] = [] # Case 0 params = {'A': 5, 'B': 10, 'C': 4, 'E': 8} conflicts = {'A': {'B', 'C'}, 'B': {'C', 'A'}, 'C': {'B', 'A'}, 'E': set()} combinations = { frozenset({'A', 'E'}), frozenset({'B', 'E'}), frozenset({'C', 'E'}) } results = { ('D', frozenset({'A', 'E'})): 1.5, ('D', frozenset({'B', 'E'})): 1.5, ('D', frozenset({'C', 'E'})): 1.2 } subtest_cases.append(SubTestCase(params, conflicts, combinations, results)) return flow_graph, comp_graph, subtest_cases
def create_test_data_flow( ) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]: flow_graph = FlowGraph() flow_graph.add_edge('D', 'A', 1.0, None) flow_graph.add_edge('E', 'A', 1.0, None) flow_graph.add_edge('A', 'B', 2.0, None) flow_graph.add_edge('B', 'C', 0.7, 0.1) flow_graph.add_edge('F', 'C', 1.0, None) flow_graph.add_edge('C', 'G', None, None) flow_graph.add_edge('H', 'G', 0.5, 0.9) flow_graph.add_edge('I', 'G', 0.4, 0.1) comp_graph = ComputationGraph() comp_graph.add_edge('D', 'A', 1.0, None) comp_graph.add_edge('E', 'A', 1.0, None) comp_graph.add_edge('A', 'B', 2.0, 0.5) comp_graph.add_edge('B', 'C', 0.7, 0.1) comp_graph.add_edge('F', 'C', 1.0, 0.9) comp_graph.add_edge('C', 'G', 1.0, 0.0) comp_graph.add_edge('H', 'G', 0.5, 0.9) comp_graph.add_edge('I', 'G', 0.4, 0.1) comp_graph.graph.nodes['A']['split'] = [False, False] comp_graph.graph.nodes['B']['split'] = [False, False] comp_graph.graph.nodes['C']['split'] = [False, True] comp_graph.graph.nodes['D']['split'] = [False, False] comp_graph.graph.nodes['E']['split'] = [False, False] comp_graph.graph.nodes['F']['split'] = [False, False] comp_graph.graph.nodes['G']['split'] = [False, True] comp_graph.graph.nodes['H']['split'] = [False, False] comp_graph.graph.nodes['I']['split'] = [False, False] return flow_graph, comp_graph, []
def create_test_data_star( ) -> Tuple[FlowGraph, ComputationGraph, List[SubTestCase]]: flow_graph = FlowGraph() flow_graph.add_edge('A', 'B', 0.05, None) flow_graph.add_edge('A', 'C', 0.7, None) flow_graph.add_edge('A', 'D', 0.1, None) flow_graph.add_edge('A', 'E', 0.15, None) comp_graph = ComputationGraph() comp_graph.add_edge('A', 'B', 0.05, 20.0) comp_graph.add_edge('A', 'C', 0.7, 1.4285714) comp_graph.add_edge('A', 'D', 0.1, 10.0) comp_graph.add_edge('A', 'E', 0.15, 6.66666667) comp_graph.graph.nodes['A']['split'] = [True, False] comp_graph.graph.nodes['B']['split'] = [False, False] comp_graph.graph.nodes['C']['split'] = [False, False] comp_graph.graph.nodes['D']['split'] = [False, False] comp_graph.graph.nodes['E']['split'] = [False, False] subtest_cases: List[SubTestCase] = [] # Case 0 params = {'B': 5, 'C': 10, 'D': 8, 'E': 12} conflicts = { 'B': {'C', 'D', 'E'}, 'C': {'B', 'D', 'E'}, 'D': {'B', 'C', 'E'}, 'E': {'B', 'C', 'D'} } combinations = { frozenset({'B'}), frozenset({'C'}), frozenset({'D'}), frozenset({'E'}) } results = { ('A', frozenset({'B'})): 100, ('A', frozenset({'C'})): 14.285714, ('A', frozenset({'D'})): 80, ('A', frozenset({'E'})): 80 } subtest_cases.append(SubTestCase(params, conflicts, combinations, results)) # Case 1 params = {'A': 5, 'B': 10} conflicts = {'A': {'B'}, 'B': {'A'}} combinations = {frozenset({'A'}), frozenset({'B'})} results = { ('A', frozenset({'B'})): 200, ('A', frozenset({'A'})): 5, ('B', frozenset({'B'})): 10, ('B', frozenset({'A'})): 0.25, ('C', frozenset({'B'})): 140, ('C', frozenset({'A'})): 3.5 } subtest_cases.append(SubTestCase(params, conflicts, combinations, results)) return flow_graph, comp_graph, subtest_cases
def flow_graph_solver(global_parameters: List[Parameter], problem_statement: ProblemStatement, input_systems: Dict[str, Set[Processor]], state: State): """ * First scales have to be solved * Second direct flows * Third conversions of flows Once flows have been found, Indicators have to be gathered. :param global_parameters: Parameters including the default value (if defined) :param problem_statement: ProblemStatement object, with scenarios (parameters changing the default) and parameters for the solver :param state: State with everything :param input_systems: A dictionary of the different systems to be solved :return: Issue[] """ class Edge(NamedTuple): src: Factor dst: Factor weight: Optional[str] def add_edges(edges: List[Edge]): for src, dst, weight in edges: src_name = get_interface_name(src, glb_idx) dst_name = get_interface_name(dst, glb_idx) if "Archetype" in [ src.processor.instance_or_archetype, dst.processor.instance_or_archetype ]: print( f"WARNING: excluding relation from '{src_name}' to '{dst_name}' because of Archetype processor" ) else: relations.add_edge(src_name, dst_name, weight=weight) glb_idx, _, _, _, _ = get_case_study_registry_objects(state) # Get all interface observations. Also resolve expressions without parameters. Cannot resolve expressions # depending only on global parameters because some of them can be overridden by scenario parameters. time_observations_absolute, time_observations_relative = get_observations_by_time( glb_idx) if len(time_observations_absolute) == 0: raise Exception( f"No absolute observations have been found. The solver has nothing to solve." ) relations = nx.DiGraph() # Add Interfaces -Flow- relations (time independent) add_edges([ Edge(r.source_factor, r.target_factor, r.weight) for r in glb_idx.get( FactorsRelationDirectedFlowObservation.partial_key()) ]) # Add Processors -Scale- relations (time independent) add_edges([ Edge(r.origin, r.destination, r.quantity) for r in glb_idx.get(FactorsRelationScaleObservation.partial_key()) ]) # TODO Expand flow graph with it2it transforms # relations_scale_it2it = glb_idx.get(FactorTypesRelationUnidirectionalLinearTransformObservation.partial_key()) # First pass to resolve weight expressions: only expressions without parameters can be solved for _, _, data in relations.edges(data=True): expression = data["weight"] if expression: value, ast, _, _ = evaluate_numeric_expression_with_parameters( expression, state) data["weight"] = ifnull(value, ast) for scenario_idx, (scenario_name, scenario_params) in enumerate( problem_statement.scenarios.items()): print(f"********************* SCENARIO: {scenario_name}") scenario_state = State() scenario_combined_params = evaluate_parameters_for_scenario( global_parameters, scenario_params) scenario_state.update(scenario_combined_params) for time_period, observations in time_observations_absolute.items(): print(f"********************* TIME PERIOD: {time_period}") # Final values are taken from "observations" that need to computed graph_params = {} # Second and last pass to resolve observation expressions with parameters for expression, obs in observations: interface_name = get_interface_name(obs.factor, glb_idx) if interface_name not in relations.nodes: print( f"WARNING: observation at interface '{interface_name}' is not taken into account." ) else: value, ast, _, issues = evaluate_numeric_expression_with_parameters( expression, scenario_state) if not value: raise Exception( f"Cannot evaluate expression '{expression}' for observation at " f"interface '{interface_name}'. Issues: {', '.join(issues)}" ) graph_params[interface_name] = value assert (graph_params is not None) # Add Processors internal -RelativeTo- relations (time dependent) # Transform relative observations into graph edges for expression, obs in time_observations_relative[time_period]: relations.add_edge(get_interface_name(obs.relative_factor, glb_idx), get_interface_name(obs.factor, glb_idx), weight=expression) # Second and last pass to resolve weight expressions: expressions with parameters can be solved for u, v, data in relations.edges(data=True): expression = data["weight"] if expression: value, ast, _, _ = evaluate_numeric_expression_with_parameters( expression, scenario_state) if not value: raise Exception( f"Cannot evaluate expression '{expression}' for weight " f"from interface '{u}' to interface '{v}'. Issues: {', '.join(issues)}" ) data["weight"] = value # ---------------------------------------------------- if time_period == '2008': for component in nx.weakly_connected_components(relations): nx.draw_kamada_kawai(relations.subgraph(component), with_labels=True) plt.show() flow_graph = FlowGraph(relations) comp_graph, issues = flow_graph.get_computation_graph() for issue in issues: print(issue) print(f"****** NODES: {comp_graph.nodes}") # ---------------------------------------------------- # Obtain nodes without a value compute_nodes = [ n for n in comp_graph.nodes if not graph_params.get(n) ] # Compute the missing information with the computation graph if len(compute_nodes) == 0: print("All nodes have a value. Nothing to solve.") return [] print(f"****** UNKNOWN NODES: {compute_nodes}") print(f"****** PARAMS: {graph_params}") conflicts = comp_graph.compute_param_conflicts( set(graph_params.keys())) for s, (param, values) in enumerate(conflicts.items()): print(f"Conflict {s + 1}: {param} -> {values}") combinations = ComputationGraph.compute_param_combinations( conflicts) for s, combination in enumerate(combinations): print(f"Combination {s}: {combination}") filtered_params = { k: v for k, v in graph_params.items() if k in combination } results, _ = comp_graph.compute_values(compute_nodes, filtered_params) results_with_values = {k: v for k, v in results.items() if v} print(f' results_with_values={results_with_values}') # TODO: work with "part_of_graph" # - Params: graph_params + results # - Compute conflicts, combinations # - For each combination "compute_values" # TODO INDICATORS # ---------------------------------------------------- # ACCOUNTING PER SYSTEM for system in input_systems: # Handle Processors -PartOf- relations proc_hierarchy = nx.DiGraph() for relation in glb_idx.get( ProcessorsRelationPartOfObservation.partial_key( )): # type: ProcessorsRelationPartOfObservation if relation.parent_processor.instance_or_archetype == "Instance": proc_hierarchy.add_edge( get_processor_name(relation.child_processor, glb_idx), get_processor_name(relation.parent_processor, glb_idx)) part_of_graph = ComputationGraph() # for relation in system_flows[system]: # type: FactorsRelationDirectedFlowObservation # # # We create another graph only with interfaces in processors with parents # for interface in [relation.source_factor, relation.target_factor]: # # processor_name = get_processor_name(interface.processor, glb_idx) # interface_full_name = processor_name+":"+interface.name # # # If "processor" is in the "PartOf" hierarchy AND the "processor:interface" is not being handled yet # if processor_name in proc_hierarchy and interface_full_name not in part_of_graph.nodes: # # Insert into the Computation Graph a copy of the "PartOf" hierarchy of processors # # for the specific interface # new_edges = [(u+":"+interface.name, v+":"+interface.name) # for u, v in weakly_connected_subgraph(proc_hierarchy, processor_name).edges] # part_of_graph.add_edges(new_edges, 1.0, None) # for component in nx.weakly_connected_components(part_of_graph.graph): # nx.draw_kamada_kawai(part_of_graph.graph.subgraph(component), with_labels=True) # plt.show() return []
def flow_graph_solver(global_parameters: List[Parameter], problem_statement: ProblemStatement, input_systems: Dict[str, Set[Processor]], state: State): """ * First scales have to be solved * Second direct flows * Third conversions of flows Once flows have been found, Indicators have to be gathered. :param global_parameters: Parameters including the default value (if defined) :param problem_statement: ProblemStatement object, with scenarios (parameters changing the default) and parameters for the solver :param state: State with everything :param input_systems: A dictionary of the different systems to be solved :return: Issue[] """ glb_idx, _, _, _, _ = get_case_study_registry_objects(state) # Initialize dictionaries system_flows: Dict[str, Set[FactorsRelationDirectedFlowObservation]] = dict() system_scales: Dict[str, Set[FactorsRelationScaleObservation]] = dict() system_processor_hierarchies: Dict[str, nx.DiGraph] = dict() for s in input_systems: system_flows[s] = set() system_scales[s] = set() system_processor_hierarchies[s] = dict() # Handle Interface Types -Scale- relations relations_scale_it2it = glb_idx.get( FactorTypesRelationUnidirectionalLinearTransformObservation. partial_key()) # Handle Interfaces -Flow- relations relations_flow = glb_idx.get( FactorsRelationDirectedFlowObservation.partial_key()) for relation in relations_flow: # type: FactorsRelationDirectedFlowObservation system_flows[relation.source_factor.processor.processor_system].add( relation) system_flows[relation.target_factor.processor.processor_system].add( relation) relations_scale = glb_idx.get( FactorsRelationScaleObservation.partial_key()) for relation in relations_scale: # type: FactorsRelationScaleObservation system_scales[relation.origin.processor.processor_system].add(relation) system_scales[relation.destination.processor.processor_system].add( relation) # Handle Processors -PartOf- relations relations_part_of = glb_idx.get( ProcessorsRelationPartOfObservation.partial_key()) for relation in relations_part_of: # type: ProcessorsRelationPartOfObservation if relation.parent_processor.instance_or_archetype.lower( ) == "instance": graph = system_processor_hierarchies[ relation.parent_processor.processor_system] if not graph: graph = nx.DiGraph() system_processor_hierarchies[ relation.parent_processor.processor_system] = graph graph.add_edge( get_processor_name(relation.child_processor, glb_idx), get_processor_name(relation.parent_processor, glb_idx)) # Get all interface observations. Also resolve expressions without parameters. Cannot resolve expressions # depending only on global parameters because some of them can be overridden by scenario parameters. observations_by_time = get_observations_by_time(glb_idx) if len(observations_by_time) == 0: raise Exception( f"No observations have been found. The solver has nothing to solve." ) # Split observations into relative and not relative observations_by_time_norelative , observations_by_time_relative = \ split_observations_by_relativeness(observations_by_time) # Combine scenario parameters with the global parameters scenario_parameters: Dict[str, Dict[str, str]] = \ {scenario_name: evaluate_parameters_for_scenario(global_parameters, scenario_params) for scenario_name, scenario_params in problem_statement.scenarios.items()} # SCALES -------------------------- # Obtain the scale VALUES # scales_prd = get_scaled(scenarios=problem_statement.scenarios, # scenario_params=scenario_parameters, # relations_scale=glb_idx.get(FactorsRelationScaleObservation.partial_key()), # observations_by_time=observations_by_time_norelative) # FLOWS -------------------------- for system in input_systems: # From Factors IN the context (LOCAL, ENVIRONMENT or OUTSIDE) # obtain a basic graph. Signal each Factor as LOCAL or EXTERNAL, and SOCIETY or ENVIRONMENT # basic_graph = prepare_interfaces_graph(systems[s][Factor]) print(f"********************* SYSTEM: {system}") # Obtain a flow graph flow_graph = FlowGraph() part_of_graph = ComputationGraph() for relation in system_flows[ system]: # type: FactorsRelationDirectedFlowObservation flow_graph.add_edge(get_interface_name(relation.source_factor, glb_idx), get_interface_name(relation.target_factor, glb_idx), weight=relation.weight, reverse_weight=None) assert (relation.source_factor.name == relation.target_factor.name) # We create another graph only with interfaces in processors with parents proc_hierarchy = system_processor_hierarchies[system] for interface in [relation.source_factor, relation.target_factor]: processor_name = get_processor_name(interface.processor, glb_idx) interface_full_name = processor_name + ":" + interface.name # If "processor" is in the "PartOf" hierarchy AND the "processor:interface" is not being handled yet if processor_name in proc_hierarchy and interface_full_name not in part_of_graph.nodes: # Insert into the Computation Graph a copy of the "PartOf" hierarchy of processors # for the specific interface new_edges = [(u + ":" + interface.name, v + ":" + interface.name) for u, v in weakly_connected_subgraph( proc_hierarchy, processor_name).edges] part_of_graph.add_edges(new_edges, 1.0, None) comp_graph, issues = flow_graph.get_computation_graph() for relation in system_scales[ system]: # type: FactorsRelationScaleObservation comp_graph.add_edge(get_interface_name(relation.origin, glb_idx), get_interface_name(relation.destination, glb_idx), weight=relation.quantity, reverse_weight=None) for issue in issues: print(issue) print(f"****** NODES: {comp_graph.nodes}") # for component in nx.weakly_connected_components(part_of_graph.graph): # nx.draw_kamada_kawai(part_of_graph.graph.subgraph(component), with_labels=True) # plt.show() # TODO Expand flow graph with it2it transforms # Split flow graphs for scenario_idx, (scenario_name, scenario) in enumerate( problem_statement.scenarios.items()): print(f"********************* SCENARIO: {scenario_name}") scenario_state = State() scenario_state.update(scenario_parameters[scenario_name]) for time_period, observations in observations_by_time_norelative.items( ): print(f"********************* TIME PERIOD: {time_period}") scales = { } # {fact: val for fact, val in scales_prd.get(dict(__t=time_period, __s=scenario_idx))} # Final values are taken from "scales" or from "observations" that need to computed graph_params = {} for expression, obs in observations: interface_name = get_interface_name(obs.factor, glb_idx) if interface_name not in comp_graph.nodes: print( f"WARNING: observation at interface '{interface_name}' is not taken into account." ) else: if scales.get(obs.factor): graph_params[interface_name] = scales[obs.factor] else: value, ast, _, issues = evaluate_numeric_expression_with_parameters( expression, scenario_state) if not value: raise Exception( f"Cannot evaluate expression '{expression}' for observation at interface '{interface_name}'" ) graph_params[interface_name] = value # ---------------------------------------------------- compute_nodes = [ n for n in comp_graph.nodes if not graph_params.get(n) ] # Compute the missing information with the computation graph if len(compute_nodes) > 0: print(f"****** UNKNOWN NODES: {compute_nodes}") print(f"****** PARAMS: {graph_params}") conflicts = comp_graph.compute_param_conflicts( set(graph_params.keys())) for s, (param, values) in enumerate(conflicts.items()): print(f"Conflict {s + 1}: {param} -> {values}") combinations = ComputationGraph.compute_param_combinations( conflicts) for s, combination in enumerate(combinations): print(f"Combination {s}: {combination}") filtered_params = { k: v for k, v in graph_params.items() if k in combination } results, _ = comp_graph.compute_values( compute_nodes, filtered_params) results_with_values = { k: v for k, v in results.items() if v } print(f' results_with_values={results_with_values}') # TODO: work with "part_of_graph" # - Params: graph_params + results # - Compute conflicts, combinations # - For each combination "compute_values" else: print( "There aren't nodes with unknown values. Nothing to solve." ) # TODO Overwrite "obs" with "scales" results # TODO Put observations into the flow-graph # TODO Put processors into scale (intensive to extensive conversion) # scale_unit_processors(flow_graph, params, relative_observations_prd) # for sub_fg in nx.weakly_connected_component_subgraphs(flow_graph): # TODO Elaborate information flow graph # Cycles allowed? # ifg = get_information_flow_graph(sub_fg) # TODO Solve information flow graph. From all possible combinations: # bottom-up if top-down USE # bottom-up if top-down DO NOT USE # top-down if bottom-up USE # top-down if bottom-up DO NOT USE # solve_flow_graph(sub_fg, ifg) # Each value: Interface, Scenario, Time, Given/Computed -> VALUE (or UNDEFINED) # TODO Put results back # TODO INDICATORS --- (INSIDE FLOWS) return []