def get_backend(backend): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "onnxruntime": from backend_onnxruntime import BackendOnnxruntime backend = BackendOnnxruntime() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "pytorch": from backend_pytorch import BackendPytorch backend = BackendPytorch() elif backend == "pytorch-native": from backend_pytorch_native import BackendPytorchNative backend = BackendPytorchNative() elif backend == "tflite": from backend_tflite import BackendTflite backend = BackendTflite() elif backend == "tflite-calibrate": from backend_tflite_calibrate import BackendTflite backend = BackendTflite() elif backend == "tflite-ncore": from backend_tflite_ncore import BackendTfliteNcore backend = BackendTfliteNcore() elif backend == "tflite-ncore-offline-imagenet": from backend_tflite_ncore_offline_imagenet import BackendTfliteNcoreOfflineImagenet backend = BackendTfliteNcoreOfflineImagenet() elif backend == "tflite-ncore-offline-ssd": from backend_tflite_ncore_offline_ssd import BackendTfliteNcoreOfflineSSD backend = BackendTfliteNcoreOfflineSSD() else: raise ValueError("unknown backend: " + backend) return backend
def get_backend(backend): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "onnxruntime": from backend_onnxruntime import BackendOnnxruntime backend = BackendOnnxruntime() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "pytorch": from backend_pytorch import BackendPytorch backend = BackendPytorch() elif backend == "pytorch-native": from backend_pytorch_native import BackendPytorchNative backend = BackendPytorchNative() elif backend == "tflite": from backend_tflite import BackendTflite backend = BackendTflite() elif backend == "tvm": from backend_tvm import BackendTvm backend = BackendTvm() else: raise ValueError("unknown backend: " + backend) return backend
def get_backend(backend): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "onnxruntime": from backend_onnxruntime import BackendOnnxruntime backend = BackendOnnxruntime() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "pytorch": from backend_pytorch import BackendPytorch backend = BackendPytorch() elif backend == "pytorch-native": from backend_pytorch_native import BackendPytorchNative backend = BackendPytorchNative() elif backend == "pytorch-centaur": from backend_pytorch_centaur import BackendPytorchCentaur backend = BackendPytorchCentaur() elif backend == "pytorch-native-calibrate": from backend_pytorch_native_calibrate import BackendPytorchNativeCalibrate backend = BackendPytorchNativeCalibrate() elif backend == "tflite": from backend_tflite import BackendTflite backend = BackendTflite() elif backend == "tflite-calibrate": from backend_tflite_calibrate import BackendTflite backend = BackendTflite() elif backend == "tflite-ncore": from backend_tflite_ncore import BackendTfliteNcore backend = BackendTfliteNcore() elif backend == "tflite-ncore-mobilenet": from backend_libncoretflite import BackendTfliteNcoreMobileNetV1 backend = BackendTfliteNcoreMobileNetV1() backend.inputs = ["image_tensor:0"] elif backend == "tflite-ncore-resnet": from backend_libncoretflite import BackendTfliteNcoreResnet backend = BackendTfliteNcoreResnet() backend.inputs = ["image_tensor:0"] elif backend == "tflite-ncore-ssd": from backend_libncoretflite import BackendTfliteNcoreSSD backend = BackendTfliteNcoreSSD() backend.inputs = ["image_tensor:0"] elif backend == "tflite-ncore-mobilenet-offline": from backend_libncoretflite import BackendTfliteNcoreMobileNetV1Offline backend = BackendTfliteNcoreMobileNetV1Offline() backend.inputs = ["image_tensor:0"] elif backend == "tflite-ncore-resnet-offline": from backend_libncoretflite import BackendTfliteNcoreResnetOffline backend = BackendTfliteNcoreResnetOffline() backend.inputs = ["image_tensor:0"] elif backend == "tflite-ncore-ssd-offline": from backend_libncoretflite import BackendTfliteNcoreSSDOffline backend = BackendTfliteNcoreSSDOffline() backend.inputs = ["image_tensor:0"] else: raise ValueError("unknown backend: " + backend) return backend
def get_backend(backend): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "openvino": from backend_openvino import BackendOpenvino backend = BackendOpenvino() else: raise ValueError("unknown backend: " + backend) return backend
def get_backend(backend, dataset_path, dataset_calibration_list): if backend == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow() elif backend == "onnxruntime": from backend_onnxruntime import BackendOnnxruntime backend = BackendOnnxruntime() elif backend == "null": from backend_null import BackendNull backend = BackendNull() elif backend == "pytorch": from backend_pytorch import BackendPytorch backend = BackendPytorch() elif backend == "pytorch-native": from backend_pytorch_native import BackendPytorchNative backend = BackendPytorchNative() elif backend == "pytorch-jit-traced": from backend_pytorch_jit_traced import BackendPytorchJITTraced backend = BackendPytorchJITTraced() elif backend == "pytorch-fp32": from backend_pytorch_fp32 import BackendPytorchFP32 backend = BackendPytorchFP32() elif backend == "pytorch-ssd-jit-traced": from backend_pytorch_ssd_jit_traced import BackendPytorchSSDJITTraced backend = BackendPytorchSSDJITTraced() elif backend == "pytorch-yolov3-jit-traced": from backend_pytorch_yolov3_jit_traced import BackendPytorchYOLOv3JITTraced backend = BackendPytorchYOLOv3JITTraced() elif backend == "pytorch-yolov3-fp32": from backend_pytorch_yolov3_fp32 import BackendPytorchYOLOv3FP32 backend = BackendPytorchYOLOv3FP32() elif backend == "tflite": from backend_tflite import BackendTflite backend = BackendTflite() elif backend == "edgecortix": from backend_edgecortix import BackendEdgecortix backend = BackendEdgecortix(dataset_path, dataset_calibration_list) else: raise ValueError("unknown backend: " + backend) return backend
def create_backend_instance(backend_type, args): if backend_type == "tensorflow": from backend_tf import BackendTensorflow backend = BackendTensorflow(model_path, batchsize, inputs=None, outputs=None) backend.load(model_path, inputs=args.inputs, outputs=args.outputs) elif backend_type == "onnxruntime": from backend.onnx_backend import BackendOnnxruntime backend = BackendOnnxruntime(args.batchsize) elif backend_type == "null": from backend_null import BackendNull backend = BackendNull() elif backend_type == "acl": from backend.acl_backend import BackendAcl backend = BackendAcl(args.batchsize) backend.load(args.model, inputs=args.inputs, outputs=args.outputs, device_id=args.device_id) else: raise ValueError("unknown backend: ", backend_type) return backend