예제 #1
0
 def create_continuous_mlp_global_dynamics_model(
         self, env_spec, name='continuous_mlp_global_dynamics_model'):
     mlp_dyna = ContinuousMLPGlobalDynamicsModel(
         env_spec=env_spec,
         name_scope=name,
         name=name,
         output_low=env_spec.obs_space.low,
         output_high=env_spec.obs_space.high,
         learning_rate=0.01,
         mlp_config=[{
             "ACT": "RELU",
             "B_INIT_VALUE": 0.0,
             "NAME": "1",
             "N_UNITS": 16,
             "TYPE": "DENSE",
             "W_NORMAL_STDDEV": 0.03
         }, {
             "ACT": "LINEAR",
             "B_INIT_VALUE": 0.0,
             "NAME": "OUPTUT",
             "N_UNITS": env_spec.flat_obs_dim,
             "TYPE": "DENSE",
             "W_NORMAL_STDDEV": 0.03
         }])
     return mlp_dyna, locals()
예제 #2
0
 def create_continuous_mlp_global_dynamics_model(
         self, env_spec, name='continuous_mlp_global_dynamics_model'):
     mlp_dyna = ContinuousMLPGlobalDynamicsModel(
         env_spec=env_spec,
         name_scope=name,
         name=name,
         state_input_scaler=RunningStandardScaler(
             dims=env_spec.flat_obs_dim),
         action_input_scaler=RunningStandardScaler(
             dims=env_spec.flat_action_dim),
         output_delta_state_scaler=RunningStandardScaler(
             dims=env_spec.flat_obs_dim),
         learning_rate=0.01,
         mlp_config=[{
             "ACT": "RELU",
             "B_INIT_VALUE": 0.0,
             "NAME": "1",
             "N_UNITS": 16,
             "TYPE": "DENSE",
             "W_NORMAL_STDDEV": 0.03
         }, {
             "ACT": "LINEAR",
             "B_INIT_VALUE": 0.0,
             "NAME": "OUPTUT",
             "N_UNITS": env_spec.flat_obs_dim,
             "TYPE": "DENSE",
             "W_NORMAL_STDDEV": 0.03
         }])
     return mlp_dyna, locals()
예제 #3
0
    def create_continue_dynamics_model(self,
                                       env_id='Acrobot-v1',
                                       name='mlp_dyna'):
        env = make(env_id)
        env_spec = EnvSpec(obs_space=env.observation_space,
                           action_space=env.action_space)

        mlp_dyna = ContinuousMLPGlobalDynamicsModel(
            env_spec=env_spec,
            name_scope=name + 'mlp_dyna',
            name=name + 'mlp_dyna',
            output_low=env_spec.obs_space.low,
            output_high=env_spec.obs_space.high,
            learning_rate=0.01,
            mlp_config=[{
                "ACT": "RELU",
                "B_INIT_VALUE": None,
                "NAME": "1",
                "N_UNITS": 16,
                "TYPE": "DENSE",
                "W_NORMAL_STDDEV": 0.03
            }, {
                "ACT": "LINEAR",
                "B_INIT_VALUE": 0.0,
                "NAME": "OUPTUT",
                "N_UNITS": env_spec.flat_obs_dim,
                "TYPE": "DENSE",
                "W_NORMAL_STDDEV": 0.03
            }])
        return mlp_dyna, locals()
예제 #4
0
def task_fn():
    env = make('Pendulum-v0')
    name = 'demo_exp'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        output_low=env_spec.obs_space.low,
        output_high=env_spec.obs_space.high,
        learning_rate=0.01,
        mlp_config=[{
            "ACT": "RELU",
            "B_INIT_VALUE": 0.0,
            "NAME": "1",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": 16,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }, {
            "ACT": "LINEAR",
            "B_INIT_VALUE": 0.0,
            "NAME": "OUPTUT",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": env_spec.flat_obs_dim,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }])
    algo = ModelPredictiveControl(
        dynamics_model=mlp_dyna,
        env_spec=env_spec,
        config_or_config_dict=dict(SAMPLED_HORIZON=2,
                                   SAMPLED_PATH_NUM=5,
                                   dynamics_model_train_iter=10),
        name=name + '_mpc',
        policy=UniformRandomPolicy(env_spec=env_spec, name='uni_policy'))
    algo.set_terminal_reward_function_for_dynamics_env(
        reward_func=RandomRewardFunc(name='reward_func'),
        terminal_func=RandomTerminalFunc(name='random_terminal'),
    )
    agent = Agent(
        env=env,
        env_spec=env_spec,
        algo=algo,
        name=name + '_agent',
        exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space,
                                           init_random_prob=0.5))
    flow = TrainTestFlow(
        train_sample_count_func=lambda: get_global_status_collect()
        ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
        config_or_config_dict={
            "TEST_EVERY_SAMPLE_COUNT": 10,
            "TRAIN_EVERY_SAMPLE_COUNT": 10,
            "START_TRAIN_AFTER_SAMPLE_COUNT": 5,
            "START_TEST_AFTER_SAMPLE_COUNT": 5,
        },
        func_dict={
            'test': {
                'func': agent.test,
                'args': list(),
                'kwargs': dict(sample_count=10),
            },
            'train': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(),
            },
            'sample': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=100,
                     env=agent.env,
                     in_which_status='TRAIN',
                     store_flag=True),
            },
        })
    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name)
    experiment.run()
예제 #5
0
def pendulum_task_fn():
    GlobalConfig().set('DEFAULT_EXPERIMENT_END_POINT',
                       exp_config['DEFAULT_EXPERIMENT_END_POINT'])

    env = make('Pendulum-v0')
    name = 'benchmark'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_q = MLPQValueFunction(env_spec=env_spec,
                              name_scope=name + '_mlp_q',
                              name=name + '_mlp_q',
                              **exp_config['MLPQValueFunction'])
    policy = DeterministicMLPPolicy(env_spec=env_spec,
                                    name_scope=name + '_mlp_policy',
                                    name=name + '_mlp_policy',
                                    output_low=env_spec.action_space.low,
                                    output_high=env_spec.action_space.high,
                                    **exp_config['DeterministicMLPPolicy'],
                                    reuse=False)

    ddpg = DDPG(env_spec=env_spec,
                policy=policy,
                value_func=mlp_q,
                name=name + '_ddpg',
                **exp_config['DDPG'])

    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        output_low=env_spec.obs_space.low,
        output_high=env_spec.obs_space.high,
        **exp_config['DynamicsModel'])
    algo = Dyna(env_spec=env_spec,
                name=name + '_dyna_algo',
                model_free_algo=ddpg,
                dynamics_model=mlp_dyna,
                config_or_config_dict=dict(dynamics_model_train_iter=10,
                                           model_free_algo_train_iter=10))
    algo.set_terminal_reward_function_for_dynamics_env(
        terminal_func=FixedEpisodeLengthTerminalFunc(
            max_step_length=env.unwrapped._max_episode_steps,
            step_count_fn=algo.dynamics_env.total_step_count_fn),
        reward_func=REWARD_FUNC_DICT['Pendulum-v0']())
    agent = Agent(env=env,
                  env_spec=env_spec,
                  algo=algo,
                  exploration_strategy=None,
                  noise_adder=AgentActionNoiseWrapper(
                      noise=NormalActionNoise(),
                      noise_weight_scheduler=ConstantSchedule(value=0.3),
                      action_weight_scheduler=ConstantSchedule(value=1.0)),
                  name=name + '_agent')

    flow = DynaFlow(
        train_sample_count_func=lambda: get_global_status_collect()
        ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
        config_or_config_dict=exp_config['DynaFlow'],
        func_dict={
            'train_algo': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_agent_training')
            },
            'train_algo_from_synthesized_data': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_agent_training', train_iter=1)
            },
            'train_dynamics': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_dynamics_training')
            },
            'test_algo': {
                'func': agent.test,
                'args': list(),
                'kwargs': dict(sample_count=1, sample_trajectory_flag=True)
            },
            'test_dynamics': {
                'func': agent.algo.test_dynamics,
                'args': list(),
                'kwargs': dict(sample_count=10, env=env)
            },
            'sample_from_real_env': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=10,
                     env=agent.env,
                     in_which_status='TRAIN',
                     store_flag=True)
            },
            'sample_from_dynamics_env': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=50,
                     sample_type='transition',
                     env=agent.algo.dynamics_env,
                     in_which_status='TRAIN',
                     store_flag=False)
            }
        })

    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name)
    experiment.run()
예제 #6
0
def pendulum_task_fn():
    exp_config = PENDULUM_BENCHMARK_CONFIG_DICT
    GlobalConfig().set('DEFAULT_EXPERIMENT_END_POINT',
                       exp_config['DEFAULT_EXPERIMENT_END_POINT'])

    env = make('Pendulum-v0')
    name = 'benchmark'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        **exp_config['DynamicsModel']
    )
    algo = ModelPredictiveControl(
        dynamics_model=mlp_dyna,
        env_spec=env_spec,
        config_or_config_dict=exp_config['MPC'],
        name=name + '_mpc',
        policy=UniformRandomPolicy(env_spec=env_spec, name='uni_policy')
    )
    algo.set_terminal_reward_function_for_dynamics_env(reward_func=REWARD_FUNC_DICT['Pendulum-v0'](),
                                                       terminal_func=FixedEpisodeLengthTerminalFunc(
                                                           max_step_length=env.unwrapped._max_episode_steps,
                                                           step_count_fn=algo.dynamics_env.total_step_count_fn), )
    agent = Agent(env=env, env_spec=env_spec,
                  algo=algo,
                  exploration_strategy=None,
                  noise_adder=None,
                  name=name + '_agent')

    flow = DynaFlow(
        train_sample_count_func=lambda: get_global_status_collect()('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
        config_or_config_dict=exp_config['DynaFlow'],
        func_dict={
            'train_dynamics': {'func': agent.train,
                               'args': list(),
                               'kwargs': dict()},
            'train_algo': None,
            'test_algo': {'func': agent.test,
                          'args': list(),
                          'kwargs': dict(sample_count=1, sample_trajectory_flag=True)},
            'test_dynamics': {'func': agent.algo.test_dynamics,
                              'args': list(),
                              'kwargs': dict(sample_count=100, env=env)},
            'sample_from_real_env': {'func': agent.sample,
                                     'args': list(),
                                     'kwargs': dict(sample_count=10,
                                                    env=agent.env,
                                                    in_which_status='TRAIN',
                                                    store_flag=True)},
            'sample_from_dynamics_env': None,
            'train_algo_from_synthesized_data': None
        }
    )

    experiment = Experiment(
        tuner=None,
        env=env,
        agent=agent,
        flow=flow,
        name=name
    )
    experiment.run()
예제 #7
0
def task_fn():
    env = make('Pendulum-v0')
    name = 'demo_exp'
    env_spec = env.env_spec
    mlp_dyna = ContinuousMLPGlobalDynamicsModel(env_spec=env_spec,
                                                name_scope=name + '_mlp_dyna',
                                                name=name + '_mlp_dyna',
                                                learning_rate=0.01,
                                                mlp_config=[{
                                                    "ACT":
                                                    "TANH",
                                                    "B_INIT_VALUE":
                                                    0.0,
                                                    "NAME":
                                                    "1",
                                                    "L1_NORM":
                                                    0.0,
                                                    "L2_NORM":
                                                    0.0,
                                                    "N_UNITS":
                                                    128,
                                                    "TYPE":
                                                    "DENSE",
                                                    "W_NORMAL_STDDEV":
                                                    0.03
                                                }, {
                                                    "ACT":
                                                    "LINEAR",
                                                    "B_INIT_VALUE":
                                                    0.0,
                                                    "NAME":
                                                    "OUPTUT",
                                                    "L1_NORM":
                                                    0.0,
                                                    "L2_NORM":
                                                    0.0,
                                                    "N_UNITS":
                                                    env_spec.flat_obs_dim,
                                                    "TYPE":
                                                    "DENSE",
                                                    "W_NORMAL_STDDEV":
                                                    0.03
                                                }])
    algo = ModelPredictiveControl(
        dynamics_model=mlp_dyna,
        env_spec=env_spec,
        config_or_config_dict=dict(SAMPLED_HORIZON=2,
                                   SAMPLED_PATH_NUM=5,
                                   dynamics_model_train_iter=10),
        name=name + '_mpc',
        policy=UniformRandomPolicy(env_spec=env_spec, name='uni_policy'))
    algo.set_terminal_reward_function_for_dynamics_env(
        reward_func=RandomRewardFunc(name='reward_func'),
        terminal_func=RandomTerminalFunc(name='random_terminal'),
    )
    agent = Agent(
        env=env,
        env_spec=env_spec,
        algo=algo,
        name=name + '_agent',
        exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space,
                                           init_random_prob=0.5))
    flow = create_train_test_flow(test_every_sample_count=10,
                                  train_every_sample_count=10,
                                  start_test_after_sample_count=5,
                                  start_train_after_sample_count=5,
                                  train_func_and_args=(agent.train, (),
                                                       dict()),
                                  test_func_and_args=(agent.test, (),
                                                      dict(sample_count=10)),
                                  sample_func_and_args=(agent.sample, (),
                                                        dict(sample_count=100,
                                                             env=agent.env,
                                                             store_flag=True)))
    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name)
    experiment.run()
예제 #8
0
def task_fn():
    env = make('Pendulum-v0')
    name = 'demo_exp'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_q = MLPQValueFunction(env_spec=env_spec,
                              name_scope=name + '_mlp_q',
                              name=name + '_mlp_q',
                              mlp_config=[{
                                  "ACT": "RELU",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "1",
                                  "N_UNITS": 16,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }, {
                                  "ACT": "LINEAR",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "OUPTUT",
                                  "N_UNITS": 1,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }])
    policy = DeterministicMLPPolicy(env_spec=env_spec,
                                    name_scope=name + '_mlp_policy',
                                    name=name + '_mlp_policy',
                                    mlp_config=[{
                                        "ACT": "RELU",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "1",
                                        "N_UNITS": 16,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }, {
                                        "ACT": "LINEAR",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "OUPTUT",
                                        "N_UNITS": env_spec.flat_action_dim,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }],
                                    reuse=False)

    ddpg = DDPG(env_spec=env_spec,
                config_or_config_dict={
                    "REPLAY_BUFFER_SIZE": 10000,
                    "GAMMA": 0.999,
                    "CRITIC_LEARNING_RATE": 0.001,
                    "ACTOR_LEARNING_RATE": 0.001,
                    "DECAY": 0.5,
                    "BATCH_SIZE": 50,
                    "TRAIN_ITERATION": 1,
                    "critic_clip_norm": 0.1,
                    "actor_clip_norm": 0.1,
                },
                value_func=mlp_q,
                policy=policy,
                name=name + '_ddpg',
                replay_buffer=None)
    mlp_dyna_list = []
    for i in range(10):
        mlp_dyna = ContinuousMLPGlobalDynamicsModel(
            env_spec=env_spec,
            name_scope=name + '_mlp_dyna_{}'.format(i),
            name=name + '_mlp_dyna_{}'.format(i),
            learning_rate=0.01,
            state_input_scaler=RunningStandardScaler(
                dims=env_spec.flat_obs_dim),
            action_input_scaler=RunningStandardScaler(
                dims=env_spec.flat_action_dim),
            output_delta_state_scaler=RunningStandardScaler(
                dims=env_spec.flat_obs_dim),
            mlp_config=[{
                "ACT": "RELU",
                "B_INIT_VALUE": 0.0,
                "NAME": "1",
                "L1_NORM": 0.0,
                "L2_NORM": 0.0,
                "N_UNITS": 16,
                "TYPE": "DENSE",
                "W_NORMAL_STDDEV": 0.03
            }, {
                "ACT": "LINEAR",
                "B_INIT_VALUE": 0.0,
                "NAME": "OUPTUT",
                "L1_NORM": 0.0,
                "L2_NORM": 0.0,
                "N_UNITS": env_spec.flat_obs_dim,
                "TYPE": "DENSE",
                "W_NORMAL_STDDEV": 0.03
            }])
        mlp_dyna_list.append(mlp_dyna)
    dyna_ensemble_model = ModelEnsemble(n_models=10,
                                        model=mlp_dyna_list,
                                        prediction_type='random',
                                        env_spec=env_spec)
    algo = ModelEnsembleAlgo(env_spec=env_spec,
                             model_free_algo=ddpg,
                             dynamics_model=dyna_ensemble_model,
                             config_or_config_dict=dict(
                                 dynamics_model_train_iter=10,
                                 model_free_algo_train_iter=10,
                                 validation_trajectory_count=2,
                             ))
    # For examples only, we use random reward function and terminal function with fixed episode length.
    algo.set_terminal_reward_function_for_dynamics_env(
        terminal_func=FixedEpisodeLengthTerminalFunc(
            max_step_length=env.unwrapped._max_episode_steps,
            step_count_fn=algo.dynamics_env.total_step_count_fn),
        reward_func=PendulumRewardFunc())
    agent = Agent(
        env=env,
        env_spec=env_spec,
        algo=algo,
        algo_saving_scheduler=PeriodicalEventSchedule(
            t_fn=lambda: get_global_status_collect()
            ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
            trigger_every_step=200,
            after_t=10),
        name=name + '_agent',
        exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space,
                                           init_random_prob=0.5))

    # we can easily reuse the dyna training flow to implement the Model-ensemble training flow.
    flow = create_dyna_flow(
        train_algo_func=(agent.train, (), dict(state='state_agent_training')),
        train_algo_from_synthesized_data_func=(
            agent.train, (), dict(state='state_agent_training')),
        train_dynamics_func=(agent.train, (),
                             dict(state='state_dynamics_training')),
        test_algo_func=(agent.test, (), dict(sample_count=10)),
        test_dynamics_func=(agent.algo.test_dynamics, (),
                            dict(sample_count=10, env=env)),
        sample_from_real_env_func=(agent.sample, (),
                                   dict(sample_count=10,
                                        env=agent.env,
                                        store_flag=True)),
        sample_from_dynamics_env_func=(agent.sample, (),
                                       dict(sample_count=10,
                                            env=agent.algo.dynamics_env,
                                            store_flag=True)),
        # set this to large enough so agent only use data from dynamics env.
        train_algo_every_real_sample_count_by_data_from_real_env=100,
        train_algo_every_real_sample_count_by_data_from_dynamics_env=100,
        test_algo_every_real_sample_count=100,
        test_dynamics_every_real_sample_count=100,
        train_dynamics_ever_real_sample_count=100,
        start_train_algo_after_sample_count=1,
        start_train_dynamics_after_sample_count=1,
        start_test_algo_after_sample_count=1,
        start_test_dynamics_after_sample_count=1,
        warm_up_dynamics_samples=100)

    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name + '_exp')
    experiment.run()
예제 #9
0
def task_fn():
    env = make('Pendulum-v0')
    name = 'demo_exp'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_q = MLPQValueFunction(env_spec=env_spec,
                              name_scope=name + '_mlp_q',
                              name=name + '_mlp_q',
                              mlp_config=[{
                                  "ACT": "RELU",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "1",
                                  "N_UNITS": 16,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }, {
                                  "ACT": "LINEAR",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "OUPTUT",
                                  "N_UNITS": 1,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }])
    policy = DeterministicMLPPolicy(env_spec=env_spec,
                                    name_scope=name + '_mlp_policy',
                                    name=name + '_mlp_policy',
                                    mlp_config=[{
                                        "ACT": "RELU",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "1",
                                        "N_UNITS": 16,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }, {
                                        "ACT": "LINEAR",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "OUPTUT",
                                        "N_UNITS": env_spec.flat_action_dim,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }],
                                    reuse=False)

    ddpg = DDPG(env_spec=env_spec,
                config_or_config_dict={
                    "REPLAY_BUFFER_SIZE": 10000,
                    "GAMMA": 0.999,
                    "Q_NET_L1_NORM_SCALE": 0.01,
                    "Q_NET_L2_NORM_SCALE": 0.01,
                    "CRITIC_LEARNING_RATE": 0.001,
                    "ACTOR_LEARNING_RATE": 0.001,
                    "DECAY": 0.5,
                    "BATCH_SIZE": 50,
                    "TRAIN_ITERATION": 1,
                    "critic_clip_norm": 0.1,
                    "actor_clip_norm": 0.1,
                },
                value_func=mlp_q,
                policy=policy,
                name=name + '_ddpg',
                replay_buffer=None)

    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        output_low=env_spec.obs_space.low,
        output_high=env_spec.obs_space.high,
        learning_rate=0.01,
        mlp_config=[{
            "ACT": "RELU",
            "B_INIT_VALUE": 0.0,
            "NAME": "1",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": 16,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }, {
            "ACT": "LINEAR",
            "B_INIT_VALUE": 0.0,
            "NAME": "OUPTUT",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": env_spec.flat_obs_dim,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }])
    algo = Dyna(env_spec=env_spec,
                name=name + '_dyna_algo',
                model_free_algo=ddpg,
                dynamics_model=mlp_dyna,
                config_or_config_dict=dict(dynamics_model_train_iter=10,
                                           model_free_algo_train_iter=10))
    # For examples only, we use random reward function and terminal function with fixed episode length.
    algo.set_terminal_reward_function_for_dynamics_env(
        terminal_func=FixedEpisodeLengthTerminalFunc(
            max_step_length=env.unwrapped._max_episode_steps,
            step_count_fn=algo.dynamics_env.total_step_count_fn),
        reward_func=RandomRewardFunc())
    agent = Agent(
        env=env,
        env_spec=env_spec,
        algo=algo,
        algo_saving_scheduler=PeriodicalEventSchedule(
            t_fn=lambda: get_global_status_collect()
            ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
            trigger_every_step=20,
            after_t=10),
        name=name + '_agent',
        exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space,
                                           init_random_prob=0.5))
    flow = DynaFlow(
        train_sample_count_func=lambda: get_global_status_collect()
        ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
        config_or_config_dict={
            "TRAIN_ALGO_EVERY_REAL_SAMPLE_COUNT_FROM_REAL_ENV": 10,
            "TRAIN_ALGO_EVERY_REAL_SAMPLE_COUNT_FROM_DYNAMICS_ENV": 10,
            "TEST_ALGO_EVERY_REAL_SAMPLE_COUNT": 10,
            "TEST_DYNAMICS_EVERY_REAL_SAMPLE_COUNT": 10,
            "TRAIN_DYNAMICS_EVERY_REAL_SAMPLE_COUNT": 10,
            "START_TRAIN_ALGO_AFTER_SAMPLE_COUNT": 1,
            "START_TRAIN_DYNAMICS_AFTER_SAMPLE_COUNT": 1,
            "START_TEST_ALGO_AFTER_SAMPLE_COUNT": 1,
            "START_TEST_DYNAMICS_AFTER_SAMPLE_COUNT": 1,
            "WARM_UP_DYNAMICS_SAMPLES": 1
        },
        func_dict={
            'train_algo': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_agent_training')
            },
            'train_algo_from_synthesized_data': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_agent_training')
            },
            'train_dynamics': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_dynamics_training')
            },
            'test_algo': {
                'func': agent.test,
                'args': list(),
                'kwargs': dict(sample_count=10)
            },
            'test_dynamics': {
                'func': agent.algo.test_dynamics,
                'args': list(),
                'kwargs': dict(sample_count=10, env=env)
            },
            'sample_from_real_env': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=10,
                     env=agent.env,
                     in_which_status='TRAIN',
                     store_flag=True)
            },
            'sample_from_dynamics_env': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=10,
                     env=agent.algo.dynamics_env,
                     in_which_status='TRAIN',
                     store_flag=True)
            }
        })

    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name + '_exp')
    experiment.run()
예제 #10
0
def task_fn():
    # create the gym environment by make function
    env = make('Pendulum-v0')
    # give your experiment a name which is used to generate the log path etc.
    name = 'demo_exp'
    # construct the environment specification
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)
    # construct the neural network to approximate q function of DDPG
    mlp_q = MLPQValueFunction(env_spec=env_spec,
                              name_scope=name + '_mlp_q',
                              name=name + '_mlp_q',
                              mlp_config=[{
                                  "ACT": "RELU",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "1",
                                  "N_UNITS": 16,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }, {
                                  "ACT": "LINEAR",
                                  "B_INIT_VALUE": 0.0,
                                  "NAME": "OUPTUT",
                                  "N_UNITS": 1,
                                  "TYPE": "DENSE",
                                  "W_NORMAL_STDDEV": 0.03
                              }])
    # construct the neural network to approximate policy for DDPG
    policy = DeterministicMLPPolicy(env_spec=env_spec,
                                    name_scope=name + '_mlp_policy',
                                    name=name + '_mlp_policy',
                                    mlp_config=[{
                                        "ACT": "RELU",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "1",
                                        "N_UNITS": 16,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }, {
                                        "ACT": "LINEAR",
                                        "B_INIT_VALUE": 0.0,
                                        "NAME": "OUPTUT",
                                        "N_UNITS": env_spec.flat_action_dim,
                                        "TYPE": "DENSE",
                                        "W_NORMAL_STDDEV": 0.03
                                    }],
                                    reuse=False)
    # construct the DDPG algorithms
    ddpg = DDPG(env_spec=env_spec,
                config_or_config_dict={
                    "REPLAY_BUFFER_SIZE": 10000,
                    "GAMMA": 0.999,
                    "CRITIC_LEARNING_RATE": 0.001,
                    "ACTOR_LEARNING_RATE": 0.001,
                    "DECAY": 0.5,
                    "BATCH_SIZE": 50,
                    "TRAIN_ITERATION": 1,
                    "critic_clip_norm": 0.1,
                    "actor_clip_norm": 0.1,
                },
                value_func=mlp_q,
                policy=policy,
                name=name + '_ddpg',
                replay_buffer=None)
    # construct a neural network based global dynamics model to approximate the state transition of environment
    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        learning_rate=0.01,
        state_input_scaler=RunningStandardScaler(dims=env_spec.flat_obs_dim),
        action_input_scaler=RunningStandardScaler(
            dims=env_spec.flat_action_dim),
        output_delta_state_scaler=RunningStandardScaler(
            dims=env_spec.flat_obs_dim),
        mlp_config=[{
            "ACT": "RELU",
            "B_INIT_VALUE": 0.0,
            "NAME": "1",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": 16,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }, {
            "ACT": "LINEAR",
            "B_INIT_VALUE": 0.0,
            "NAME": "OUPTUT",
            "L1_NORM": 0.0,
            "L2_NORM": 0.0,
            "N_UNITS": env_spec.flat_obs_dim,
            "TYPE": "DENSE",
            "W_NORMAL_STDDEV": 0.03
        }])
    # finally, construct the Dyna algorithms with a model free algorithm DDGP, and a NN model.
    algo = Dyna(env_spec=env_spec,
                name=name + '_dyna_algo',
                model_free_algo=ddpg,
                dynamics_model=mlp_dyna,
                config_or_config_dict=dict(dynamics_model_train_iter=10,
                                           model_free_algo_train_iter=10))
    # To make the NN based dynamics model a proper environment so be a sampling source for DDPG, reward function and
    # terminal function need to be set.

    # For examples only, we use random reward function and terminal function with fixed episode length.
    algo.set_terminal_reward_function_for_dynamics_env(
        terminal_func=FixedEpisodeLengthTerminalFunc(
            max_step_length=env.unwrapped._max_episode_steps,
            step_count_fn=algo.dynamics_env.total_step_count_fn),
        reward_func=RandomRewardFunc())
    # construct agent with additional exploration strategy if needed.
    agent = Agent(
        env=env,
        env_spec=env_spec,
        algo=algo,
        algo_saving_scheduler=PeriodicalEventSchedule(
            t_fn=lambda: get_global_status_collect()
            ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
            trigger_every_step=20,
            after_t=10),
        name=name + '_agent',
        exploration_strategy=EpsilonGreedy(action_space=env_spec.action_space,
                                           init_random_prob=0.5))
    # construct the training flow, called Dyna flow. It defines how the training proceed, and the terminal condition
    flow = create_dyna_flow(
        train_algo_func=(agent.train, (), dict(state='state_agent_training')),
        train_algo_from_synthesized_data_func=(
            agent.train, (), dict(state='state_agent_training')),
        train_dynamics_func=(agent.train, (),
                             dict(state='state_dynamics_training')),
        test_algo_func=(agent.test, (), dict(sample_count=1)),
        test_dynamics_func=(agent.algo.test_dynamics, (),
                            dict(sample_count=10, env=env)),
        sample_from_real_env_func=(agent.sample, (),
                                   dict(sample_count=10,
                                        env=agent.env,
                                        store_flag=True)),
        sample_from_dynamics_env_func=(agent.sample, (),
                                       dict(sample_count=10,
                                            env=agent.algo.dynamics_env,
                                            store_flag=True)),
        train_algo_every_real_sample_count_by_data_from_real_env=40,
        train_algo_every_real_sample_count_by_data_from_dynamics_env=40,
        test_algo_every_real_sample_count=40,
        test_dynamics_every_real_sample_count=40,
        train_dynamics_ever_real_sample_count=20,
        start_train_algo_after_sample_count=1,
        start_train_dynamics_after_sample_count=1,
        start_test_algo_after_sample_count=1,
        start_test_dynamics_after_sample_count=1,
        warm_up_dynamics_samples=1)
    # construct the experiment
    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name + '_exp')
    # run!
    experiment.run()
예제 #11
0
def pendulum_task_fn():
    exp_config = PENDULUM_BENCHMARK_CONFIG_DICT
    GlobalConfig().set('DEFAULT_EXPERIMENT_END_POINT',
                       exp_config['DEFAULT_EXPERIMENT_END_POINT'])

    env = make('Pendulum-v0')
    name = 'benchmark'
    env_spec = EnvSpec(obs_space=env.observation_space,
                       action_space=env.action_space)

    mlp_dyna = ContinuousMLPGlobalDynamicsModel(
        env_spec=env_spec,
        name_scope=name + '_mlp_dyna',
        name=name + '_mlp_dyna',
        output_low=env_spec.obs_space.low,
        output_high=env_spec.obs_space.high,
        **exp_config['DynamicsModel'])
    dyna_env = DynamicsEnvWrapper(mlp_dyna)
    dyna_env.set_terminal_reward_func(
        terminal_func=FixedEpisodeLengthTerminalFunc(
            max_step_length=env.unwrapped._max_episode_steps,
            step_count_fn=dyna_env.total_step_count_fn),
        reward_func=REWARD_FUNC_DICT['Pendulum-v0']())

    policy = iLQRPolicy(env_spec=env_spec,
                        **exp_config['ILQR'],
                        dynamics=dyna_env,
                        cost_fn=RewardFuncCostWrapper(
                            reward_func=REWARD_FUNC_DICT['Pendulum-v0']()))

    algo = iLQRAlogWrapper(policy=policy,
                           env_spec=env_spec,
                           dynamics_env=dyna_env)

    agent = Agent(env=env,
                  env_spec=env_spec,
                  algo=algo,
                  exploration_strategy=None,
                  noise_adder=None,
                  name=name + '_agent')

    flow = DynaFlow(
        train_sample_count_func=lambda: get_global_status_collect()
        ('TOTAL_AGENT_TRAIN_SAMPLE_COUNT'),
        config_or_config_dict=exp_config['DynaFlow'],
        func_dict={
            'train_dynamics': {
                'func': agent.train,
                'args': list(),
                'kwargs': dict(state='state_dynamics_training')
            },
            'train_algo': None,
            'test_algo': {
                'func': agent.test,
                'args': list(),
                'kwargs': dict(sample_count=1, sample_trajectory_flag=True)
            },
            'test_dynamics': {
                'func': agent.algo.test_dynamics,
                'args': list(),
                'kwargs': dict(sample_count=100, env=env)
            },
            'sample_from_real_env': {
                'func':
                agent.sample,
                'args':
                list(),
                'kwargs':
                dict(sample_count=10,
                     env=agent.env,
                     in_which_status='TRAIN',
                     store_flag=True)
            },
            'sample_from_dynamics_env': None,
            'train_algo_from_synthesized_data': None
        })

    experiment = Experiment(tuner=None,
                            env=env,
                            agent=agent,
                            flow=flow,
                            name=name)
    experiment.run()