예제 #1
0
    def extract_magnitude_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            'extract_magnitude',
            desc="Extracts the first b==0 volume from the series",
            citations=[],
            name_maps=name_maps)

        dwiextract = pipeline.add(
            'dwiextract',
            ExtractDWIorB0(
                bzero=True,
                out_ext='.nii.gz'),
            inputs={
                'in_file': ('series', nifti_gz_format),
                'fslgrad': self.fsl_grads(pipeline, coregistered=False)},
            requirements=[mrtrix_req.v('3.0rc3')])

        pipeline.add(
            "extract_first_vol",
            MRConvert(
                coord=(3, 0)),
            inputs={
                'in_file': (dwiextract, 'out_file')},
            outputs={
                'magnitude': ('out_file', nifti_gz_format)},
            requirements=[mrtrix_req.v('3.0rc3')])

        return pipeline
예제 #2
0
    def extract_magnitude_pipeline(self, **name_maps):

        pipeline = self.new_pipeline(
            'extract_magnitude',
            desc="Extracts a single magnitude volume from a series",
            citations=[],
            name_maps=name_maps)

        pipeline.add("extract_first_vol",
                     MRConvert(coord=(3, 0)),
                     inputs={'in_file': ('series', nifti_gz_format)},
                     outputs={'magnitude': ('out_file', nifti_gz_format)},
                     requirements=[mrtrix_req.v('3.0rc3')])

        return pipeline
예제 #3
0
파일: dmri.py 프로젝트: amrka/banana
    def extract_b0_pipeline(self, **name_maps):  # @UnusedVariable
        """
        Extracts the b0 images from a DWI study and takes their mean
        """

#             inputs=[FilesetSpec('bias_correct', nifti_gz_format),
#                     FilesetSpec('grad_dirs', fsl_bvecs_format),
#                     FilesetSpec('bvalues', fsl_bvals_format)],
#             outputs=[FilesetSpec('b0', nifti_gz_format)],
        pipeline = self.new_pipeline(
            name='extract_b0',
            desc="Extract b0 image from a DWI study",
            references=[mrtrix_cite],
            name_maps=name_maps)
        # Gradient merge node
        fsl_grads = pipeline.add("fsl_grads", MergeTuple(2))
        # Extraction node
        extract_b0s = pipeline.add(
            'extract_b0s', ExtractDWIorB0(),
            requirements=[mrtrix_req.v('3.0rc3')])
        extract_b0s.inputs.bzero = True
        extract_b0s.inputs.quiet = True
        # FIXME: Need a registration step before the mean
        # Mean calculation node
        mean = pipeline.add(
            "mean",
            MRMath(),
            requirements=[mrtrix_req.v('3.0rc3')])
        mean.inputs.axis = 3
        mean.inputs.operation = 'mean'
        mean.inputs.quiet = True
        # Convert to Nifti
        mrconvert = pipeline.add("output_conversion", MRConvert(),
                                         requirements=[mrtrix_req.v('3.0rc3')])
        mrconvert.inputs.out_ext = '.nii.gz'
        mrconvert.inputs.quiet = True
        # Connect inputs
        pipeline.connect_input('bias_correct', extract_b0s, 'in_file')
        pipeline.connect_input('grad_dirs', fsl_grads, 'in1')
        pipeline.connect_input('bvalues', fsl_grads, 'in2')
        # Connect between nodes
        pipeline.connect(extract_b0s, 'out_file', mean, 'in_files')
        pipeline.connect(fsl_grads, 'out', extract_b0s, 'grad_fsl')
        pipeline.connect(mean, 'out_file', mrconvert, 'in_file')
        # Connect outputs
        pipeline.connect_output('b0', mrconvert, 'out_file')
        # Check inputs/outputs are connected
        return pipeline
예제 #4
0
    def extract_b0_pipeline(self, **name_maps):
        """
        Extracts the b0 images from a DWI study and takes their mean
        """

        pipeline = self.new_pipeline(
            name='extract_b0',
            desc="Extract b0 image from a DWI study",
            citations=[mrtrix_cite],
            name_maps=name_maps)

        # Extraction node
        extract_b0s = pipeline.add(
            'extract_b0s',
            ExtractDWIorB0(
                bzero=True,
                quiet=True),
            inputs={
                'fslgrad': self.fsl_grads(pipeline),
                'in_file': (self.series_preproc_spec_name, nifti_gz_format)},
            requirements=[mrtrix_req.v('3.0rc3')])

        # FIXME: Need a registration step before the mean
        # Mean calculation node
        mean = pipeline.add(
            "mean",
            MRMath(
                axis=3,
                operation='mean',
                quiet=True),
            inputs={
                'in_files': (extract_b0s, 'out_file')},
            requirements=[mrtrix_req.v('3.0rc3')])

        # Convert to Nifti
        pipeline.add(
            "output_conversion",
            MRConvert(
                out_ext='.nii.gz',
                quiet=True),
            inputs={
                'in_file': (mean, 'out_file')},
            outputs={
                'b0': ('out_file', nifti_gz_format)},
            requirements=[mrtrix_req.v('3.0rc3')])

        return pipeline
예제 #5
0
 def interface(self):
     return MRConvert(out_ext=self.output_format.extension, quiet=True)
예제 #6
0
파일: dmri.py 프로젝트: amrka/banana
    def intensity_normalisation_pipeline(self, **name_maps):

#             inputs=[FilesetSpec('bias_correct', nifti_gz_format),
#                     FilesetSpec('brain_mask', nifti_gz_format),
#                     FilesetSpec('grad_dirs', fsl_bvecs_format),
#                     FilesetSpec('bvalues', fsl_bvals_format)],
#             outputs=[FilesetSpec('norm_intensity', mrtrix_format),
#                      FilesetSpec('norm_intens_fa_template', mrtrix_format,
#                                  frequency='per_study'),
#                      FilesetSpec('norm_intens_wm_mask', mrtrix_format,
#                                  frequency='per_study')],
        pipeline = self.new_pipeline(
            name='intensity_normalization',
            desc="Corrects for B1 field inhomogeneity",
            references=[mrtrix_req.v('3.0rc3')],
            name_maps=name_maps)
        # Convert from nifti to mrtrix format
        grad_merge = pipeline.add("grad_merge", MergeTuple(2))
        mrconvert = pipeline.add('mrconvert', MRConvert())
        mrconvert.inputs.out_ext = '.mif'
        # Set up join nodes
        fields = ['dwis', 'masks', 'subject_ids', 'visit_ids']
        join_subjects = pipeline.add(
            'join_subjects',
            IdentityInterface(fields),
            joinsource=self.SUBJECT_ID,
            joinfield=fields)
        join_visits = pipeline.add(
            'join_visits',
            Chain(fields),
            joinsource=self.VISIT_ID,
            joinfield=fields)
        # Set up expand nodes
        select = pipeline.add(
            'expand', SelectSession())
        # Intensity normalization
        intensity_norm = pipeline.add(
            'dwiintensitynorm', DWIIntensityNorm())
        # Connect inputs
        pipeline.connect_input('bias_correct', mrconvert, 'in_file')
        pipeline.connect_input('grad_dirs', grad_merge, 'in1')
        pipeline.connect_input('bvalues', grad_merge, 'in2')
        pipeline.connect_subject_id(join_subjects, 'subject_ids')
        pipeline.connect_visit_id(join_subjects, 'visit_ids')
        pipeline.connect_subject_id(select, 'subject_id')
        pipeline.connect_visit_id(select, 'visit_id')
        pipeline.connect_input('brain_mask', join_subjects, 'masks')
        # Internal connections
        pipeline.connect(grad_merge, 'out', mrconvert, 'grad_fsl')
        pipeline.connect(mrconvert, 'out_file', join_subjects, 'dwis')
        pipeline.connect(join_subjects, 'dwis', join_visits, 'dwis')
        pipeline.connect(join_subjects, 'masks', join_visits, 'masks')
        pipeline.connect(join_subjects, 'subject_ids', join_visits,
                         'subject_ids')
        pipeline.connect(join_subjects, 'visit_ids', join_visits,
                         'visit_ids')
        pipeline.connect(join_visits, 'dwis', intensity_norm, 'in_files')
        pipeline.connect(join_visits, 'masks', intensity_norm, 'masks')
        pipeline.connect(join_visits, 'subject_ids', select, 'subject_ids')
        pipeline.connect(join_visits, 'visit_ids', select, 'visit_ids')
        pipeline.connect(intensity_norm, 'out_files', select, 'items')
        # Connect outputs
        pipeline.connect_output('norm_intensity', select, 'item')
        pipeline.connect_output('norm_intens_fa_template', intensity_norm,
                                'fa_template')
        pipeline.connect_output('norm_intens_wm_mask', intensity_norm,
                                'wm_mask')
        return pipeline
예제 #7
0
파일: dmri.py 프로젝트: amrka/banana
    def preprocess_pipeline(self, **name_maps):  # @UnusedVariable @IgnorePep8
        """
        Performs a series of FSL preprocessing steps, including Eddy and Topup

        Parameters
        ----------
        phase_dir : str{AP|LR|IS}
            The phase encode direction
        """

        # Determine whether we can correct for distortion, i.e. if reference
        # scans are provided
        # Include all references
        references = [fsl_cite, eddy_cite, topup_cite,
                      distort_correct_cite]
        if self.branch('preproc_denoise'):
            references.extend(dwidenoise_cites)

        pipeline = self.new_pipeline(
            name='preprocess',
            name_maps=name_maps,
            desc=(
                "Preprocess dMRI studies using distortion correction"),
            references=references)

        # Create nodes to gradients to FSL format
        if self.input('magnitude').format == dicom_format:
            extract_grad = pipeline.add(
                "extract_grad",
                ExtractFSLGradients(),
                inputs={
                    'in_file': ('magnitude', dicom_format)},
                outputs={
                    'bvecs_file': ('grad_dirs', fsl_bvecs_format),
                    'bvals_file': ('bvalues', fsl_bvals_format)},
                requirements=[mrtrix_req.v('3.0rc3')])
            grad_fsl_kwargs = {
                'connect': {'in1': (extract_grad, 'bvecs_file'),
                            'in2': (extract_grad, 'bvals_file')}}
        elif self.provided('grad_dirs') and self.provided('bvalues'):
            grad_fsl_kwargs = {
                'inputs': {'in1': ('grad_dirs', fsl_bvecs_format),
                           'in2': ('bvalues', fsl_bvals_format)}}
        else:
            raise ArcanaDesignError(
                "Either input 'magnitude' image needs to be in DICOM format "
                "or gradient directions and b-values need to be explicitly "
                "provided to {}".format(self))

        # Gradient merge node
        grad_fsl = pipeline.add(
            "grad_fsl",
            MergeTuple(2),
            **grad_fsl_kwargs)

        # Denoise the dwi-scan
        if self.branch('preproc_denoise'):
            # Run denoising
            denoise = pipeline.add(
                'denoise',
                DWIDenoise(),
                inputs={
                    'in_file': ('magnitude', nifti_gz_format)},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Calculate residual noise
            subtract_operands = pipeline.add(
                'subtract_operands',
                Merge(2),
                inputs={
                    'in1': ('magnitude', nifti_gz_format)},
                connect={
                    'in2': (denoise, 'noise')})

            pipeline.add(
                'subtract',
                MRCalc(
                    operation='subtract'),
                connect={
                    'operands': (subtract_operands, 'out')},
                outputs={
                    'out_file': ('noise_residual', mrtrix_format)},
                requirements=[mrtrix_req.v('3.0rc3')])

        # Preproc kwargs
        preproc_kwargs = {}

        if (self.provided('dwi_reference') or
                self.provided('reverse_phase')):
            # Extract b=0 volumes
            dwiextract = pipeline.add(
                'dwiextract',
                ExtractDWIorB0(
                    bzero=True,
                    out_ext='.nii.gz'),
                inputs={
                    'in_file': ('magnitude', dicom_format)},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Get first b=0 from dwi b=0 volumes
            mrconvert = pipeline.add(
                "mrconvert",
                MRConvert(
                    coord=(3, 0)),
                connect={
                    'in_file': (dwiextract, 'out_file')},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Concatenate extracted forward rpe with reverse rpe
            mrcat = pipeline.add(
                'mrcat',
                MRCat(),
                inputs={
                    'second_scan': ((
                        'dwi_reference' if self.provided('dwi_reference')
                        else 'reverse_phase'), mrtrix_format)},
                connect={
                    'first_scan': (mrconvert, 'out_file')},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Create node to assign the right PED to the diffusion
            prep_dwi = pipeline.add(
                'prepare_dwi',
                PrepareDWI(),
                inputs={
                    'pe_dir': ('ped', float),
                    'ped_polarity': ('pe_angle', float)})

            preproc_kwargs['rpe_pair'] = True

            distortion_correction = True
            preproc_conns = {'connect': {'se_epi': (mrcat, 'out_file')}}
        else:
            distortion_correction = False
            preproc_kwargs['rpe_none'] = True
            preproc_conns = {}

        if self.parameter('preproc_pe_dir') is not None:
            preproc_kwargs['pe_dir'] = self.parameter('preproc_pe_dir')

        preproc = pipeline.add(
            'dwipreproc',
            DWIPreproc(
                no_clean_up=True,
                out_file_ext='.nii.gz',
                # FIXME: Need to determine this programmatically
                # eddy_parameters = '--data_is_shelled '
                temp_dir='dwipreproc_tempdir',
                **preproc_kwargs),
            connect={
                'grad_fsl': (grad_fsl, 'out')},
            outputs={
                'eddy_parameters': ('eddy_par', eddy_par_format)},
            requirements=[mrtrix_req.v('3.0rc3'), fsl_req.v('5.0.10')],
            wall_time=60,
            **preproc_conns)
        if self.branch('preproc_denoise'):
            pipeline.connect(denoise, 'out_file', preproc, 'in_file')
        else:
            pipeline.connect_input('magnitude', preproc, 'in_file',
                                   nifti_gz_format)
        if distortion_correction:
            pipeline.connect(prep_dwi, 'pe', preproc, 'pe_dir')

        # Create node to reorient preproc out_file
        pipeline.add(
            'fslreorient2std',
            fsl.utils.Reorient2Std(),
            connect={
                'in_file': (preproc, 'out_file')},
            outputs={
                'out_file': ('preproc', nifti_gz_format)},
            requirements=[fsl_req.v('5.0.9')])

        return pipeline
예제 #8
0
    def intensity_normalisation_pipeline(self, **name_maps):

        if self.num_sessions < 2:
            raise ArcanaMissingDataException(
                "Cannot normalise intensities of DWI images as study only "
                "contains a single session")
        elif self.num_sessions < self.RECOMMENDED_NUM_SESSIONS_FOR_INTENS_NORM:
            logger.warning(
                "The number of sessions in the study ({}) is less than the "
                "recommended number for intensity normalisation ({}). The "
                "results may be unreliable".format(
                    self.num_sessions,
                    self.RECOMMENDED_NUM_SESSIONS_FOR_INTENS_NORM))

        pipeline = self.new_pipeline(
            name='intensity_normalization',
            desc="Corrects for B1 field inhomogeneity",
            citations=[mrtrix_req.v('3.0rc3')],
            name_maps=name_maps)

        mrconvert = pipeline.add(
            'mrconvert',
            MRConvert(
                out_ext='.mif'),
            inputs={
                'in_file': (self.series_preproc_spec_name, nifti_gz_format),
                'grad_fsl': self.fsl_grads(pipeline)},
            requirements=[mrtrix_req.v('3.0rc3')])

        # Pair subject and visit ids together, expanding so they can be
        # joined and chained together
        session_ids = pipeline.add(
            'session_ids',
            utility.IdentityInterface(
                ['subject_id', 'visit_id']),
            inputs={
                'subject_id': (Study.SUBJECT_ID, int),
                'visit_id': (Study.VISIT_ID, int)})

        # Set up join nodes
        join_fields = ['dwis', 'masks', 'subject_ids', 'visit_ids']
        join_over_subjects = pipeline.add(
            'join_over_subjects',
            utility.IdentityInterface(
                join_fields),
            inputs={
                'masks': (self.brain_mask_spec_name, nifti_gz_format),
                'dwis': (mrconvert, 'out_file'),
                'subject_ids': (session_ids, 'subject_id'),
                'visit_ids': (session_ids, 'visit_id')},
            joinsource=self.SUBJECT_ID,
            joinfield=join_fields)

        join_over_visits = pipeline.add(
            'join_over_visits',
            Chain(
                join_fields),
            inputs={
                'dwis': (join_over_subjects, 'dwis'),
                'masks': (join_over_subjects, 'masks'),
                'subject_ids': (join_over_subjects, 'subject_ids'),
                'visit_ids': (join_over_subjects, 'visit_ids')},
            joinsource=self.VISIT_ID,
            joinfield=join_fields)

        # Intensity normalization
        intensity_norm = pipeline.add(
            'dwiintensitynorm',
            DWIIntensityNorm(),
            inputs={
                'in_files': (join_over_visits, 'dwis'),
                'masks': (join_over_visits, 'masks')},
            outputs={
                'norm_intens_fa_template': ('fa_template',
                                            mrtrix_image_format),
                'norm_intens_wm_mask': ('wm_mask', mrtrix_image_format)},
            requirements=[mrtrix_req.v('3.0rc3')])

        # Set up expand nodes
        pipeline.add(
            'expand', SelectSession(),
            inputs={
                'subject_ids': (join_over_visits, 'subject_ids'),
                'visit_ids': (join_over_visits, 'visit_ids'),
                'inlist': (intensity_norm, 'out_files'),
                'subject_id': (Study.SUBJECT_ID, int),
                'visit_id': (Study.VISIT_ID, int)},
            outputs={
                'norm_intensity': ('item', mrtrix_image_format)})

        # Connect inputs
        return pipeline
예제 #9
0
    def preprocess_pipeline(self, **name_maps):
        """
        Performs a series of FSL preprocessing steps, including Eddy and Topup

        Parameters
        ----------
        phase_dir : str{AP|LR|IS}
            The phase encode direction
        """

        # Determine whether we can correct for distortion, i.e. if reference
        # scans are provided
        # Include all references
        references = [fsl_cite, eddy_cite, topup_cite,
                      distort_correct_cite, n4_cite]
        if self.branch('preproc_denoise'):
            references.extend(dwidenoise_cites)

        pipeline = self.new_pipeline(
            name='preprocess',
            name_maps=name_maps,
            desc=(
                "Preprocess dMRI studies using distortion correction"),
            citations=references)

        # Create nodes to gradients to FSL format
        if self.input('series').format == dicom_format:
            extract_grad = pipeline.add(
                "extract_grad",
                ExtractFSLGradients(),
                inputs={
                    'in_file': ('series', dicom_format)},
                outputs={
                    'grad_dirs': ('bvecs_file', fsl_bvecs_format),
                    'bvalues': ('bvals_file', fsl_bvals_format)},
                requirements=[mrtrix_req.v('3.0rc3')])
            grad_fsl_inputs = {'in1': (extract_grad, 'bvecs_file'),
                               'in2': (extract_grad, 'bvals_file')}
        elif self.provided('grad_dirs') and self.provided('bvalues'):
            grad_fsl_inputs = {'in1': ('grad_dirs', fsl_bvecs_format),
                               'in2': ('bvalues', fsl_bvals_format)}
        else:
            raise BananaUsageError(
                "Either input 'magnitude' image needs to be in DICOM format "
                "or gradient directions and b-values need to be explicitly "
                "provided to {}".format(self))

        # Gradient merge node
        grad_fsl = pipeline.add(
            "grad_fsl",
            MergeTuple(2),
            inputs=grad_fsl_inputs)

        gradients = (grad_fsl, 'out')

        # Create node to reorient preproc out_file
        if self.branch('reorient2std'):
            reorient = pipeline.add(
                'fslreorient2std',
                fsl.utils.Reorient2Std(
                    output_type='NIFTI_GZ'),
                inputs={
                    'in_file': ('series', nifti_gz_format)},
                requirements=[fsl_req.v('5.0.9')])
            reoriented = (reorient, 'out_file')
        else:
            reoriented = ('series', nifti_gz_format)

        # Denoise the dwi-scan
        if self.branch('preproc_denoise'):
            # Run denoising
            denoise = pipeline.add(
                'denoise',
                DWIDenoise(),
                inputs={
                    'in_file': reoriented},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Calculate residual noise
            subtract_operands = pipeline.add(
                'subtract_operands',
                Merge(2),
                inputs={
                    'in1': reoriented,
                    'in2': (denoise, 'noise')})

            pipeline.add(
                'subtract',
                MRCalc(
                    operation='subtract'),
                inputs={
                    'operands': (subtract_operands, 'out')},
                outputs={
                    'noise_residual': ('out_file', mrtrix_image_format)},
                requirements=[mrtrix_req.v('3.0rc3')])
            denoised = (denoise, 'out_file')
        else:
            denoised = reoriented

        # Preproc kwargs
        preproc_kwargs = {}
        preproc_inputs = {'in_file': denoised,
                          'grad_fsl': gradients}

        if self.provided('reverse_phase'):

            if self.provided('magnitude', default_okay=False):
                dwi_reference = ('magnitude', mrtrix_image_format)
            else:
                # Extract b=0 volumes
                dwiextract = pipeline.add(
                    'dwiextract',
                    ExtractDWIorB0(
                        bzero=True,
                        out_ext='.nii.gz'),
                    inputs={
                        'in_file': denoised,
                        'fslgrad': gradients},
                    requirements=[mrtrix_req.v('3.0rc3')])

                # Get first b=0 from dwi b=0 volumes
                extract_first_b0 = pipeline.add(
                    "extract_first_vol",
                    MRConvert(
                        coord=(3, 0)),
                    inputs={
                        'in_file': (dwiextract, 'out_file')},
                    requirements=[mrtrix_req.v('3.0rc3')])

                dwi_reference = (extract_first_b0, 'out_file')

            # Concatenate extracted forward rpe with reverse rpe
            combined_images = pipeline.add(
                'combined_images',
                MRCat(),
                inputs={
                    'first_scan': dwi_reference,
                    'second_scan': ('reverse_phase', mrtrix_image_format)},
                requirements=[mrtrix_req.v('3.0rc3')])

            # Create node to assign the right PED to the diffusion
            prep_dwi = pipeline.add(
                'prepare_dwi',
                PrepareDWI(),
                inputs={
                    'pe_dir': ('ped', float),
                    'ped_polarity': ('pe_angle', float)})

            preproc_kwargs['rpe_pair'] = True

            distortion_correction = True
            preproc_inputs['se_epi'] = (combined_images, 'out_file')
        else:
            distortion_correction = False
            preproc_kwargs['rpe_none'] = True

        if self.parameter('preproc_pe_dir') is not None:
            preproc_kwargs['pe_dir'] = self.parameter('preproc_pe_dir')

        preproc = pipeline.add(
            'dwipreproc',
            DWIPreproc(
                no_clean_up=True,
                out_file_ext='.nii.gz',
                # FIXME: Need to determine this programmatically
                # eddy_parameters = '--data_is_shelled '
                temp_dir='dwipreproc_tempdir',
                **preproc_kwargs),
            inputs=preproc_inputs,
            outputs={
                'eddy_par': ('eddy_parameters', eddy_par_format)},
            requirements=[mrtrix_req.v('3.0rc3'), fsl_req.v('5.0.10')],
            wall_time=60)

        if distortion_correction:
            pipeline.connect(prep_dwi, 'pe', preproc, 'pe_dir')

        mask = pipeline.add(
            'dwi2mask',
            BrainMask(
                out_file='brainmask.nii.gz'),
            inputs={
                'in_file': (preproc, 'out_file'),
                'grad_fsl': gradients},
            requirements=[mrtrix_req.v('3.0rc3')])

        # Create bias correct node
        pipeline.add(
            "bias_correct",
            DWIBiasCorrect(
                method='ants'),
            inputs={
                'grad_fsl': gradients,  # internal
                'in_file': (preproc, 'out_file'),
                'mask': (mask, 'out_file')},
            outputs={
                'series_preproc': ('out_file', nifti_gz_format)},
            requirements=[mrtrix_req.v('3.0rc3'), ants_req.v('2.0')])

        return pipeline