def weighted_feature_reg_loss(gt_f_pairs, sel_a_indices): # generate a gaussian kernel inp = np.zeros((7, 7), dtype=np.float32) inp[3, 3] = 1 gaussian_kernel = fi.gaussian_filter(inp, 2.0) kernel = torch.cuda.FloatTensor(gaussian_kernel).view(1, 1, 7, 7) kernel -= kernel.min() kernel /= kernel.max() kernel -= 0.75 M = sel_a_indices.shape[2] feature_map_loss = 0.0 for level, (f_a, gt_f_wrap_b) in enumerate(gt_f_pairs): N, C, H, W = gt_f_wrap_b.shape sel_a_idx = sel_a_indices[:, 2 - level, :].view(N, M).detach() gt_f_wrap_b_weighted = F.conv2d(gt_f_wrap_b.view(N * C, 1, H, W), kernel, padding=3).view(N, C, H, W) f_a_select = batched_index_select(f_a.view(N, C, H * W), 2, sel_a_idx) gt_f_wrap_b_weighted_select = batched_index_select( gt_f_wrap_b_weighted.view(N, C, H * W), 2, sel_a_idx) e = f_a_select - gt_f_wrap_b_weighted_select feature_map_loss += torch.mean(e * e) return feature_map_loss
def forward(self, input): N = input.shape[0] assert input.dtype == torch.float32 assert input.shape[-3:] == self.input_shape_chw assert N == self.aggr_pyramid_f_a[0].shape[0] # Aggregate pyramid feature on frame B aggr_pyramid_f_b = self.aggregate_pyramid_features( self.backbone_net.forward(input)) T = torch.eye(4).detach() for level in [2, 1, 0]: (level_H, level_W) = self.level_dim_hw[level] M = self.sel_a_indices.shape[2] # number of selected pts # Features on current level f_a = self.aggr_pyramid_f_a[level] f_b = aggr_pyramid_f_b[level] f_b_grad = batched_gradient(f_b) # dim: (N, 2*C, H, W) # Resize and Rescale the depth and the intrinsic matrix rescale_ratio = 1.0 / math.pow(2, level) level_K = rescale_ratio * self.K.detach() # dim: (N, 3, 3) level_d_a = F.interpolate( self.d_a, scale_factor=rescale_ratio).detach() # dim: (N, 1, H, W) sel_a_idx = self.sel_a_indices[:, level, :].view( N, M).detach() # dim: (N, M) # Cache several variables: x_a_2d = self.x_valid_2d[level] # dim: (N, H*W, 2) X_a_3d = batched_pi_inv(level_K, x_a_2d, level_d_a.view((N, level_H * level_W, 1))) X_a_3d_sel = batched_index_select(X_a_3d, 1, sel_a_idx) # dim: (N, M, 3) # Run iteration 3 times for itr in range(0, 1): T, r, delta_norm, lamb = module.dm_levenberg_marquardt_itr( T, X_a_3d, X_a_3d_sel, f_a, sel_a_idx, level_K, f_b, f_b_grad, self.lambda_prediction, level) print("Level:", level, " Itr", itr, " delta norm:", delta_norm) return T[:, :3, :3], T[:, :3, 3]
def photometric_error(I_a, sel_pt_idx, I_b, x_b_2d): N = I_a.shape[0] # number of batches M = sel_pt_idx.shape[1] # number of samples C = I_a.shape[1] # number of channels H = I_a.shape[2] W = I_a.shape[3] # Wrap the image Ib_wrap = batched_interp2d(I_b, x_b_2d) # Intensity error e = I_a - Ib_wrap # select choosen indecs e = e.view(N, C, H * W) e = batched_index_select(e, 2, sel_pt_idx) return e
def valid(self, I_a, d_a, sel_a_indices, K, I_b, se3_gt, epoch): """ Pre cache the variable for prediction :param I_a: Image of frame A, dim: (N, C, H, W) :param d_a: Depth of frame A, dim: (N, 1, H, W) :param sel_a_indices: (N, 3, M) :param K: intrinsic matrix at level 0: dim: (N, 3, 3) :param I_b: Image of frame B, dim: (N, C, H, W) :param se3_gt: ground truth Pose """ (N, C, H, W) = I_a.shape I_a.detach() I_b.detach() # Ground-truth pose R_gt, t_gt = se3_exp(se3_gt) # Concate I_a and I_b I = torch.cat([I_a, I_b], dim=0) # Aggregate pyramid features aggr_pyramid = self.aggregate_pyramid_features( self.backbone_net.forward(I)) aggr_pyramid_f_a = [f[:N, :, :, :] for f in aggr_pyramid] aggr_pyramid_f_b = [f[N:, :, :, :] for f in aggr_pyramid] # Init a se(3) vector and mark requires_grad = True # alpha = torch.tensor([1e-4, 1e-4, 1e-4, 0.0, 0.0, 0.0]).repeat(N).view((N, 6)) # dim: (N, 6) # factor = 0.3 # alpha = module.gen_random_alpha(se3_gt, rot_angle_rfactor=1.25, trans_vec_rfactor=0.16).view((N, 6)).cuda() # alpha.requires_grad_() T = torch.eye(4).view(1, 4, 4).repeat(N, 1, 1).detach() init_T = T pred_SE3_list = [ ] # (num_level: low_res to high_res, num_iter_per_level) gt_f_pair_list = [] lambda_weight = [] flow_list = [] for level in [2, 1, 0]: pred_SE3_list.append([]) lambda_weight.append([]) flow_list.append([]) (level_H, level_W) = self.level_dim_hw[level] M = sel_a_indices.shape[2] # number of selected pts # Features on current level f_a = aggr_pyramid_f_a[level] f_b = aggr_pyramid_f_b[level] f_b_grad = batched_gradient(f_b) # dim: (N, 2*C, H, W) # Resize and Rescale the depth and the intrinsic matrix rescale_ratio = 1.0 / math.pow(2, level) level_K = rescale_ratio * K.detach() # dim: (N, 3, 3) level_d_a = F.interpolate( d_a, scale_factor=rescale_ratio).detach() # dim: (N, 1, H, W) sel_a_idx = sel_a_indices[:, level, :].view(N, M).detach() # dim: (N, M) # Cache several variables: x_a_2d = self.x_train_2d[level] # dim: (N, H*W, 2) X_a_3d = batched_pi_inv(level_K, x_a_2d, level_d_a.view((N, level_H * level_W, 1))) X_a_3d_sel = batched_index_select(X_a_3d, 1, sel_a_idx) # dim: (N, M, 3) """ Ground-truth correspondence for Regularizer """ f_C = f_a.shape[1] X_b_3d_gt = batched_transpose(R_gt, t_gt, X_a_3d) x_b_2d_gt, _ = batched_pi(level_K, X_b_3d_gt) x_b_2d_gt = module.batched_x_2d_normalize(float(level_H), float(level_W), x_b_2d_gt).view( N, level_H, level_W, 2) # (N, H, W, 2) gt_f_wrap_b = batched_interp2d(f_b, x_b_2d_gt) f_a_select = batched_index_select( f_a.view(N, f_C, level_H * level_W), 2, sel_a_idx) gt_f_wrap_b_select = batched_index_select( gt_f_wrap_b.view(N, f_C, level_H * level_W), 2, sel_a_idx) gt_f_pair_list.append((f_a_select, gt_f_wrap_b_select)) # Run iteration 3 times for itr in range(0, 6): T, r, delta_norm, lamb, flow = module.dm_levenberg_marquardt_itr( T, X_a_3d, X_a_3d_sel, f_a, sel_a_idx, level_K, f_b, f_b_grad, self.lambda_prediction, level) pred_SE3_list[-1].append(T) flow_list[-1].append((flow, x_b_2d_gt.detach())) return pred_SE3_list, gt_f_pair_list, init_T.detach(), flow_list
def compute_pose(I_a, d_a, sel_a_idx, I_b, K, alpha, T_gt, opt_max_itr=100, opt_eps=1e-5): # Debug assert assert sel_a_indices.dtype == torch.int64 assert I_a.dtype == torch.float32 assert I_b.dtype == torch.float32 assert d_a.dtype == torch.float32 # Dimension N, C, H, W = I_a.shape # Pre-processing # sel_a_idx = select_gradient_pixels(I_a, d_a, threshold=50.0)[: 2000] M = sel_a_idx.shape[1] I_b_grad = batched_gradient( I_b ) # dim: (N, 2*C, H, W), (N, 0:C, H, W) = dI/dx, (N, C:2C, H, W) = dI/dy assert H == d_a.shape[2] assert W == d_a.shape[3] # se(3) vector init lambda_w = 0.2 * torch.ones(N, 6) d_a = d_a.view((N, H * W, 1)) # Points' 3D Position at Frame a x_a_2d = x_2d_coords_torch(N, H, W).view(N, H * W, 2) X_a_3d = batched_pi_inv(K, x_a_2d, d_a) X_a_3d_sel = batched_index_select(X_a_3d, 1, sel_a_idx) # groundtruth wrap alpha_gt = torch.tensor([0.5, 0.5, 0.5, 0.0, 0.0, 0.0]).repeat(N).view( (N, 6)) R_gt, _ = se3_exp(alpha_gt) I = torch.eye(3).view(1, 3, 3).expand(N, 3, 3).cuda() zeros = torch.zeros_like(T_gt[:, :, 3]).cuda() random_t = torch.zeros_like(T_gt[:, :, 3]).normal_(std=0.001) #print('random_t:', random_t) X_b_3d_gt = batched_transpose(R_gt, zeros, X_a_3d_sel) x_b_2d_gt, _ = batched_pi(K, X_b_3d_gt) for itr in range(0, opt_max_itr): R, t = se3_exp(alpha) X_b_3d = batched_transpose(R, t, X_a_3d_sel) x_b_2d, _ = batched_pi(K, X_b_3d) # Residual error e = (x_b_2d_gt - x_b_2d).view(N, M * 2) # (N, H*W*2) # Compute Jacobin Mat. # Jacobi of Camera Pose: delta_u / delta_alpha J = -J_camera_pose(X_a_3d_sel, K).view(N, M * 2, 6) # (N*M, 2, 6) # x_b_2d = batched_x_2d_normalize(H, W, x_b_2d).view(N, H, W, 2) # (N, H, W, 2) # # # Wrap the image # I_b_wrap = batched_interp2d(I_b, x_b_2d) # # # Residual error # e = (I_a - I_b_wrap).view(N, C, H*W) # (N, C, H, W) # e = batched_index_select(e, 2, sel_a_idx) # (N, C, M) # e = e.transpose(1, 2).contiguous().view(N, M*C) # (N, M, C) # # # Compute Jacobin Mat. # # Jacobi of Camera Pose: delta_u / delta_alpha # du_d_alpha = J_camera_pose(X_a_3d_sel, K).view(N * M, 2, 6) # (N*M, 2, 6) # # # Jacobi of Image gradient: delta_I_b / delta_u # dI_du = batched_interp2d(I_b_grad, x_b_2d) # (N, 2*C, H, W) # dI_du = batched_index_select(dI_du.view(N, 2*C, H*W), 2, sel_a_idx) # (N, 2*C, M) # dI_du = torch.transpose(dI_du, 1, 2).contiguous().view(N * M, 2, C) # (N*M, 2, C) # dI_du = torch.transpose(dI_du, 1, 2) # (N*M, C, 2) # # # J = -dI_b/du * du/d_alpha # J = -torch.bmm(dI_du, du_d_alpha).view(N, C*M, 6) # Compute the update parameters delta, delta_norm = gauss_newtown_update(J, e) # (N, 6), (N, 1) max_norm = torch.max(delta_norm).item() if max_norm < opt_eps: print('break') break r_norm = torch.sum(e * e, dim=1) / M #2.0 print('Itr:', itr, 'r_norm=', torch.sqrt(r_norm), "update_norm=", max_norm) # Update the delta alpha = alpha + delta return R, t