예제 #1
0
def plot_hist(run_id, clus, MgII, title):
    """ Plot cluster and MgII redshift histograms. """
    zbin = Bins(np.arange(-0.1, 1.2, 0.025))
    fig = plt.figure(1, figsize=(4.5, 4.5))
    fig.clf()
    ax = plt.gca()
    vals, _ = np.histogram(clus.z, bins=zbin.edges)
    y = np.where(vals == 0, -10, np.log10(vals))
    ax.plot(zbin.cen,
            y,
            'r',
            lw=2,
            ls='steps-mid',
            label='clusters (n=%i)' % len(clus),
            zorder=10)
    vals, _ = np.histogram(MgII['z'], bins=zbin.edges)
    label = 'MgII (n={})'.format(len(MgII))
    y = np.where(vals == 0, -10, np.log10(vals))
    ax.plot(zbin.cen, y, 'b', lw=2, ls='steps-mid', label=label)
    ax.set_xlabel('$\mathrm{Redshift}$')
    ax.set_ylabel('$\mathrm{Number}$')
    y0, y1 = ax.get_ylim()
    ax.set_ylim(-0.8, y1)
    ax.set_xlim(0.25, 1.05)
    make_log_ylabels(ax)
    ax.legend(frameon=0, fontsize=8)
    ax.set_title(title)
    plt.savefig(run_id + '/zhist.png', dpi=200, bbox_inches='tight')
예제 #2
0
def plot_hist(run_id, clus, MgII, title):
    """ Plot cluster and MgII redshift histograms. """
    zbin = Bins(np.arange(-0.1, 1.2, 0.025))
    fig = plt.figure(1, figsize=(4.5,4.5))
    fig.clf()
    ax = plt.gca()
    vals,_ = np.histogram(clus.z, bins=zbin.edges)
    y = np.where(vals == 0, -10, np.log10(vals))
    ax.plot(zbin.cen, y, 'r', lw=2, ls='steps-mid',
            label='clusters (n=%i)' % len(clus), zorder=10)
    vals,_ = np.histogram(MgII['z'], bins=zbin.edges)
    label = 'MgII (n={})'.format(len(MgII))
    y = np.where(vals == 0, -10, np.log10(vals))
    ax.plot(zbin.cen, y, 'b',lw=2, ls='steps-mid', label=label)
    ax.set_xlabel('$\mathrm{Redshift}$')
    ax.set_ylabel('$\mathrm{Number}$')
    y0,y1 = ax.get_ylim()
    ax.set_ylim(-0.8, y1)
    ax.set_xlim(0.25, 1.05)
    make_log_ylabels(ax)
    ax.legend(frameon=0, fontsize=8)
    ax.set_title(title)
    plt.savefig(run_id + '/zhist.png', dpi=200, bbox_inches='tight')
예제 #3
0
        dNdz, dNdz_er, n = find_dndz_vs_rho(
            rho, ab['MgII'], iMgII_from_id,
            ewbins.edges[i], ewbins.edges[i+1])
        y = np.log10(dNdz)
        ylo = np.log10(dNdz - dNdz_er)
        yhi = np.log10(dNdz + dNdz_er)
        errplot(rbin.cen + offsets[i], y, (ylo, yhi), ax=ax,
                fmt=colors[i]+symbols[i], label=labels[i])
        for j in range(len(n)):
            puttext(rbin.cen[j], 0.03 + i*0.03, str(n[j]), ax, color=colors[i],
                    fontsize=10, xcoord='data', ha='center')
    
    ax.legend(frameon=0)
    ax.set_xlabel('Cluster-absorber impact par. (proper Mpc)')
    ax.set_ylabel(r'$dN/dz\ (MgII)$')
    # skip last bin, where not all pairs are measured.
    ax.set_xlim(rbin.edges[0] - rbin.halfwidth[0],
                rbin.edges[-2] + rbin.halfwidth[-1])
    make_log_xlabels(ax)
    make_log_ylabels(ax)
    #fig3.savefig(run_id + '/dNdz_vs_rho.png')
    plt.show()


if 0:
    # check whether QSO properties are consistent across bins
    qso_orig = append_QSO_props(ab)
    ab['qso'] = qso_orig
    fig = plt.figure(figsize=(20,5))
    plot_rho_QSO_prop(fig, rho, ab, iqso_from_id)
예제 #4
0
                ax=ax,
                fmt=colors[i] + symbols[i],
                label=labels[i])
        for j in range(len(n)):
            puttext(rbin.cen[j],
                    0.03 + i * 0.03,
                    str(n[j]),
                    ax,
                    color=colors[i],
                    fontsize=10,
                    xcoord='data',
                    ha='center')

    ax.legend(frameon=0)
    ax.set_xlabel('Cluster-absorber impact par. (proper Mpc)')
    ax.set_ylabel(r'$dN/dz\ (MgII)$')
    # skip last bin, where not all pairs are measured.
    ax.set_xlim(rbin.edges[0] - rbin.halfwidth[0],
                rbin.edges[-2] + rbin.halfwidth[-1])
    make_log_xlabels(ax)
    make_log_ylabels(ax)
    #fig3.savefig(run_id + '/dNdz_vs_rho.png')
    plt.show()

if 0:
    # check whether QSO properties are consistent across bins
    qso_orig = append_QSO_props(ab)
    ab['qso'] = qso_orig
    fig = plt.figure(figsize=(20, 5))
    plot_rho_QSO_prop(fig, rho, ab, iqso_from_id)