예제 #1
0
def phase_deltaM(
    delta_M, steps, nu, L
):  ############# create a graph showing trajectory and seperatrix in 2D in steps
    # solve the gLV equations for ic=[.5, .5]
    ic = [.5, .5]
    t = np.linspace(0, 500, 5001)
    traj_2D = integrate.odeint(integrand, ic, t, args=(nu, L))
    plt.plot(traj_2D[:, 0], traj_2D[:, 1], 'b', label='Old Trajectory')
    # generate Taylor expansion of separatrix
    p = bb.Params((L, [0, 0], nu))
    u, v = p.get_11_ss()

    taylor_coeffs = p.get_taylor_coeffs(order=5)
    # create separatrix
    xs = np.linspace(0, 1.2, 1001)
    ys0 = np.array([
        sum([(taylor_coeffs[i] / math.factorial(i)) * (x - u)**i
             for i in range(len(taylor_coeffs))]) for x in xs
    ])
    plt.plot(xs, ys0, color='b', ls='--', label='Old Separatrix')
    for i in range(steps):
        L_new = delta_M / steps * (i + 1) + L
        p_new = bb.Params((L_new, [0, 0], nu))
        u_new, v_new = p_new.get_11_ss()
        taylor_coeffs_new = p_new.get_taylor_coeffs(order=5)
        ys_new = np.array([
            sum([(taylor_coeffs_new[i] / math.factorial(i)) * (x - u_new)**i
                 for i in range(len(taylor_coeffs_new))]) for x in xs
        ])
        plt.plot(xs, ys_new, color='red', ls='--')
        ##################traj#######################
        traj_2D_new = integrate.odeint(integrand, ic, t, args=(nu, L_new))
        #plt.plot(traj_2D_new[:,0], traj_2D_new[:,1],'r')

    plt.plot(xs, ys_new, color='red', ls='--',
             label='New Separatrix')  #####adding the legend
    plt.plot(traj_2D_new[:, 0], traj_2D_new[:, 1], 'r',
             label='New Trajectory')  #####adding the legend
    plt.axis([0, 1.2, 0, 1.2])
    plt.xlabel(r'$x_a$', fontsize=20)
    plt.ylabel(r'$x_b$', fontsize=20)
    plt.scatter([1, 0, .5], [0, 1, .5], facecolor='k', edgecolor='k')
    plt.tight_layout()
    plt.legend(prop={'size': 20}, loc=1)
    filename = 'figs/phase_space.pdf'
    plt.savefig(filename)
예제 #2
0
def get_analytic_separatrix(eps, mu, M):
    """Use the analytically determined separatrix from barebones_CDI.py to
    compute the separatrix point, rather than the computationally expensive
    bisection method"""
    # call function Params from barbones_CDI.py
    p = bb.Params((M, None, mu))
    # return eigenvalues (where wither xa or xb = 0)
    xa_eigs = np.linalg.eig(p.get_jacobian(p.get_10_ss()))[0]
    xb_eigs = np.linalg.eig(p.get_jacobian(p.get_01_ss()))[0]
    # return eigenvalues  where both eigenvalues are nonzero
    mixed_ss_eigs = np.linalg.eig(p.get_jacobian(p.get_11_ss()))[0]
    zero = 1e-10
    if any(xa_eigs > zero) and all(xb_eigs <= zero):
        # xa is unstable => trajectory will go to xb
        sep_point = 0
    elif all(xa_eigs <= zero) and any(xb_eigs > zero):
        # xb is unstable
        sep_point = 1
    elif all(mixed_ss_eigs < zero):
        # mixed steady state is stable => not a bistable system
        sep_point = (0, 1)
    else:
        # standard bistable system; compute separatrix analytically
        coeffs = p.get_taylor_coeffs(8)
        u, v = p.get_11_ss()
        p1 = 0
        p2 = 1
        while abs(p2 - p1) > eps:
            po = (p1 + p2) / 2.0
            sep_val = sum([(coeffs[i] / math.factorial(i)) * (po - u)**i
                           for i in range(len(coeffs))])
            val = 1 - po - sep_val
            if val > 0:
                p1 = po
            elif val < 0:
                p2 = po
        sep_point = 1 - po

    print('    2D analytic separatrix at p={}'.format(sep_point))
    return sep_point
def how_to_get_separatrix():
    # labels = list of 11 bacteria names; mu = bacterial growth rates (11D);
    # M = bacterial interactions (11D);
    # eps = susceptibility to antibiotics (we won't use this)
    labels, mu, M, eps = bb.get_stein_params()
    # stein_ss = dictionary of steady states A-E. We choose to focus on two steady
    # states (C and E)
    stein_ss = bb.get_all_ss()
    ssa = stein_ss['E']
    ssb = stein_ss['C']
    # we get the reduced 2D growth rates nu and 2D interactions L through steady
    # state reduction
    nu, L = bb.SSR(ssa, ssb, mu, M)
    # solve the gLV equations for ic=[.5, .5]
    ic = [.5, .5]
    t = np.linspace(0, 10, 1001)
    traj_2D = integrate.odeint(integrand, ic, t, args=(nu, L))

    # generate Taylor expansion of separatrix
    p = bb.Params((L, [0, 0], nu))
    # now p is a Class, and it contains elements p.M, and p.mu, as well as various
    # helper functions (e.g. the get_11_ss function, which returns the semistable
    # coexistent fixed point
    u, v = p.get_11_ss()
    # return Taylor coefficients to 5th order
    taylor_coeffs = p.get_taylor_coeffs(order=5)
    # create separatrix
    xs = np.linspace(0, 1, 1001)
    ys = np.array([
        sum([(taylor_coeffs[i] / math.factorial(i)) * (x - u)**i
             for i in range(len(taylor_coeffs))]) for x in xs
    ])

    plt.plot(traj_2D[:, 0], traj_2D[:, 1])
    plt.plot(xs, ys, color='grey', ls='--')
    plt.axis([0, 1, 0, 1])
    plt.tight_layout()
    filename = 'figs/example_trajectory.pdf'
    plt.savefig(filename)
예제 #4
0
# stein_ss = dictionary of steady states A-E. We choose to focus on two steady
# states (C and E)
stein_ss = bb.get_all_ss()
ssa = stein_ss['E']
ssb = stein_ss['C']
# we get the reduced 2D growth rates nu and 2D interactions L through steady
# state reduction
nu, L = bb.SSR(ssa, ssb, mu, M)
# solve the gLV equations for ic=[.5, .5]
ic = [.5, .5]
ic2 = [1.1, .3]
t = np.linspace(0, 10, 1001)
traj_2D = integrate.odeint(integrand, ic, t, args=(nu, L))
traj_2D_2 = integrate.odeint(integrand, ic2, t, args=(nu, L))
# generate Taylor expansion of separatrix
p = bb.Params((L, [0, 0], nu))
# now p is a Class, and it contains elements p.M, and p.mu, as well as various
# helper functions (e.g. the get_11_ss function, which returns the semistable
# coexistent fixed point
u, v = p.get_11_ss()
print(u, v)
# return Taylor coefficients to 5th order
taylor_coeffs = p.get_taylor_coeffs(order=5)
# create separatrix
xs = np.linspace(0, 1.2, 1001)
ys = np.array([
    sum([(taylor_coeffs[i] / math.factorial(i)) * (x - u)**i
         for i in range(len(taylor_coeffs))]) for x in xs
])

plt.plot(traj_2D[:, 0], traj_2D[:, 1], label='Trajectory')
예제 #5
0
ssb = stein_ss['C']
# we get the reduced 2D growth rates nu and 2D interactions L through steady
# state reduction
nu, L = bb.SSR(ssa, ssb, mu, M)
#################################################################
change_L = Delta_M1  #change from M1 to M6
L_new = L - change_L
print(L)
###################################################################
# solve the gLV equations for ic=[.5, .5]
ic = [.5, .5]
t = np.linspace(0, 20, 1001)
traj_2D = integrate.odeint(integrand, ic, t, args=(nu, L))
traj_2D_new = integrate.odeint(integrand, ic, t, args=(nu, L_new))  #added
# generate Taylor expansion of separatrix
p = bb.Params((L, [0, 0], nu))
# now p is a Class, and it contains elements p.M, and p.mu, as well as various
# helper functions (e.g. the get_11_ss function, which returns the semistable
# coexistent fixed point
u, v = p.get_11_ss()
print(u, v)
# return Taylor coefficients to 5th order
taylor_coeffs = p.get_taylor_coeffs(order=5)
# create separatrix
xs = np.linspace(0, 1.2, 1001)
ys = np.array([
    sum([(taylor_coeffs[i] / math.factorial(i)) * (x - u)**i
         for i in range(len(taylor_coeffs))]) for x in xs
])
#################################################################
p_new = bb.Params((L_new, [0, 0], nu))
# state reduction
nu, L = bb.SSR(ssa, ssb, mu, M)
#################################################################
change_L = Delta_M1             #change from M1 to M6
L_new = L - change_L
L_middle1 = L-change_L/4
L_middle2 = L-change_L/2
L_middle3 = L-change_L*3/4
###################################################################
# solve the gLV equations for ic=[.5, .5]
ic = [.5, .5]
t = np.linspace(0, 20, 1001)
traj_2D = integrate.odeint(integrand, ic, t, args=(nu, L))
traj_2D_new = integrate.odeint(integrand, ic, t, args=(nu, L_new))#added
# generate Taylor expansion of separatrix
p = bb.Params((L, [0, 0], nu))
# now p is a Class, and it contains elements p.M, and p.mu, as well as various
# helper functions (e.g. the get_11_ss function, which returns the semistable
# coexistent fixed point
u, v = p.get_11_ss()
print(u, v)
# return Taylor coefficients to 5th order
taylor_coeffs = p.get_taylor_coeffs(order=5)
# create separatrix
xs = np.linspace(0, 1.2, 1001)
ys = np.array([sum([(taylor_coeffs[i]/math.factorial(i))*(x - u)**i for i in range(len(taylor_coeffs))])
               for x in xs])
#################################################################
p_new = bb.Params((L_new, [0, 0], nu))
u_new, v_new = p_new.get_11_ss()
print(u_new, v_new)