예제 #1
0
    def test_one_agent_at_goal_state_limits(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        init_state = np.array(
            [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6])
        agent_params = param_server.AddChild("agent1")
        goal_polygon = Polygon2d(
            [0, 0, 0],
            [Point2d(-1, -1),
             Point2d(-1, 1),
             Point2d(1, 1),
             Point2d(1, -1)])
        goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725))

        agent = Agent(
            init_state, behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params,
            GoalDefinitionStateLimits(
                goal_polygon,
                (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None)

        world = World(param_server)
        world.AddAgent(agent)
        evaluator = EvaluatorGoalReached(agent.id)
        world.AddEvaluator("success", evaluator)

        info = world.Evaluate()
        self.assertEqual(info["success"], True)
예제 #2
0
 def __init__(self,
              params=ParameterServer(),
              eval_agent=None,
              bark_eval_fns=None,
              bark_ml_eval_fns=None):
   self._eval_agent = eval_agent
   self._params = params["ML"]["GeneralEvaluator"]
   self._bark_eval_fns = bark_eval_fns or {
     "goal_reached" : lambda: EvaluatorGoalReached(),
     "collision" : lambda: EvaluatorCollisionEgoAgent(),
     "step_count" : lambda: EvaluatorStepCount(),
     "drivable_area" : lambda: EvaluatorDrivableArea()
   }
   self._bark_ml_eval_fns = bark_ml_eval_fns or {
     "collision_functor" : CollisionFunctor(self._params),
     "goal_functor" : GoalFunctor(self._params),
     "low_speed_goal_reached_functor" : LowSpeedGoalFunctor(self._params),
     "drivable_area_functor" : DrivableAreaFunctor(self._params),
     "step_count_functor" : StepCountFunctor(self._params),
     "smoothness_functor" : SmoothnessFunctor(self._params),
     "min_max_vel_functor" : MinMaxVelFunctor(self._params),
     # "pot_center_functor": PotentialCenterlineFunctor(self._params),
     # "pot_vel_functor": PotentialVelocityFunctor(self._params),
     "pot_goal_center_functor": PotentialGoalCenterlineFunctor(self._params),
     # "pot_goal_switch_vel_functor": PotentialGoalSwitchVelocityFunctor(self._params)
     # "state_action_logging_functor": StateActionLoggingFunctor(self._params)
   }
예제 #3
0
 def _add_evaluators(self):
     evaluators = {}
     evaluators["goal_reached"] = EvaluatorGoalReached()
     evaluators["collision"] = EvaluatorCollisionEgoAgent()
     evaluators["step_count"] = EvaluatorStepCount()
     evaluators["drivable_area"] = EvaluatorDrivableArea()
     return evaluators
예제 #4
0
  def test_one_agent_at_goal_sequential(self):
    param_server = ParameterServer()
    # Model Definition
    dynamic_model = SingleTrackModel(param_server)
    behavior_model = BehaviorMPContinuousActions(param_server)
    idx = behavior_model.AddMotionPrimitive(np.array([1, 0]))
    behavior_model.ActionToBehavior(idx)
    execution_model = ExecutionModelInterpolate(param_server)


    # Agent Definition
    agent_2d_shape = CarLimousine()
    init_state = np.array([0, 0, 0, 0, 0])
    agent_params = param_server.AddChild("agent1")
    goal_frame = Polygon2d([0, 0, 0],
                             [Point2d(-1,-1),
                              Point2d(-1,1),
                              Point2d(1,1),
                              Point2d(1,-1)])

    goal_polygon1 = goal_frame.Translate(Point2d(10, 0))
    goal_polygon2 = goal_frame.Translate(Point2d(20, 0))
    goal_polygon3 = goal_frame.Translate(Point2d(30, 0))

    goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08])
    goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08])
    goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08])

    goal_definition = GoalDefinitionSequential([goal_def1,
                                                goal_def2,
                                                goal_def3])

    self.assertEqual(len(goal_definition.sequential_goals),3)
    agent = Agent(init_state,
                behavior_model,
                dynamic_model,
                execution_model,
                agent_2d_shape,
                agent_params,
                goal_definition,
                  None)

    world = World(param_server)
    world.AddAgent(agent)
    evaluator = EvaluatorGoalReached(agent.id)
    world.AddEvaluator("success", evaluator)

    # just drive with the single motion primitive should be successful 
    for _ in range(0,1000):
        world.Step(0.2)
        info = world.Evaluate()
        if info["success"]:
            break
    
    self.assertEqual(info["success"], True)
    self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
예제 #5
0
    def test_one_agent_at_goal_state_limits_frenet(self):
        param_server = ParameterServer()
        # Model Definition
        behavior_model = BehaviorConstantVelocity(param_server)
        execution_model = ExecutionModelInterpolate(param_server)
        dynamic_model = SingleTrackModel(param_server)

        # Agent Definition
        agent_2d_shape = CarLimousine()
        agent_params = param_server.AddChild("agent1")

        center_line = Line2d()
        center_line.AddPoint(Point2d(5.0, 5.0))
        center_line.AddPoint(Point2d(10.0, 10.0))
        center_line.AddPoint(Point2d(20.0, 10.0))

        max_lateral_dist = (0.4, 1)
        max_orientation_diff = (0.08, 0.1)
        velocity_range = (20.0, 25.0)
        goal_definition = GoalDefinitionStateLimitsFrenet(
            center_line, max_lateral_dist, max_orientation_diff,
            velocity_range)

        # not at goal x,y, others yes
        agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # at goal x,y and others
        agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]),
                       behavior_model, dynamic_model, execution_model,
                       agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent3 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        # not at goal x,y, orientation but not v
        agent4 = Agent(
            np.array([
                0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0],
                velocity_range[0] - 0.01
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # at goal x,y, at lateral limit
        agent5 = Agent(
            np.array([
                0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y slightly out of lateral limit
        agent6 = Agent(
            np.array([
                0, 15, 10 + max_lateral_dist[0] + 0.05,
                3.14 / 4 + max_orientation_diff[0], velocity_range[0]
            ]), behavior_model, dynamic_model, execution_model, agent_2d_shape,
            agent_params, goal_definition, None)

        # not at goal x,y,v yes but not orientation
        agent7 = Agent(
            np.array(
                [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001,
                 20]), behavior_model, dynamic_model, execution_model,
            agent_2d_shape, agent_params, goal_definition, None)

        world = World(param_server)
        world.AddAgent(agent1)
        world.AddAgent(agent2)
        world.AddAgent(agent3)
        world.AddAgent(agent4)
        world.AddAgent(agent5)
        world.AddAgent(agent6)
        world.AddAgent(agent7)

        evaluator1 = EvaluatorGoalReached(agent1.id)
        evaluator2 = EvaluatorGoalReached(agent2.id)
        evaluator3 = EvaluatorGoalReached(agent3.id)
        evaluator4 = EvaluatorGoalReached(agent4.id)
        evaluator5 = EvaluatorGoalReached(agent5.id)
        evaluator6 = EvaluatorGoalReached(agent6.id)
        evaluator7 = EvaluatorGoalReached(agent7.id)
        world.AddEvaluator("success1", evaluator1)
        world.AddEvaluator("success2", evaluator2)
        world.AddEvaluator("success3", evaluator3)
        world.AddEvaluator("success4", evaluator4)
        world.AddEvaluator("success5", evaluator5)
        world.AddEvaluator("success6", evaluator6)
        world.AddEvaluator("success7", evaluator7)

        info = world.Evaluate()
        self.assertEqual(info["success1"], False)
        self.assertEqual(info["success2"], True)
        self.assertEqual(info["success3"], False)
        self.assertEqual(info["success4"], False)
        self.assertEqual(info["success5"], True)
        self.assertEqual(info["success6"], False)
        self.assertEqual(info["success7"], False)
예제 #6
0
 def _add_evaluators(self):
     """Evaluators that will be set in the BARK world"""
     self._evaluators["goal_reached"] = EvaluatorGoalReached()
     self._evaluators["collision"] = EvaluatorCollisionEgoAgent()
     self._evaluators["step_count"] = EvaluatorStepCount()
     self._evaluators["drivable_area"] = EvaluatorDrivableArea()