def test_one_agent_at_goal_state_limits(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array( [0, -191.789, -50.1725, 3.14 * 3.0 / 4.0, 150 / 3.6]) agent_params = param_server.AddChild("agent1") goal_polygon = Polygon2d( [0, 0, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(1, 1), Point2d(1, -1)]) goal_polygon = goal_polygon.Translate(Point2d(-191.789, -50.1725)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionStateLimits( goal_polygon, (3.14 * 3.0 / 4.0 - 0.08, 3.14 * 3.0 / 4.0 + 0.08)), None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) info = world.Evaluate() self.assertEqual(info["success"], True)
def test_one_agent_at_goal_sequential(self): param_server = ParameterServer() # Model Definition dynamic_model = SingleTrackModel(param_server) behavior_model = BehaviorMPContinuousActions(param_server) idx = behavior_model.AddMotionPrimitive(np.array([1, 0])) behavior_model.ActionToBehavior(idx) execution_model = ExecutionModelInterpolate(param_server) # Agent Definition agent_2d_shape = CarLimousine() init_state = np.array([0, 0, 0, 0, 0]) agent_params = param_server.AddChild("agent1") goal_frame = Polygon2d([0, 0, 0], [Point2d(-1,-1), Point2d(-1,1), Point2d(1,1), Point2d(1,-1)]) goal_polygon1 = goal_frame.Translate(Point2d(10, 0)) goal_polygon2 = goal_frame.Translate(Point2d(20, 0)) goal_polygon3 = goal_frame.Translate(Point2d(30, 0)) goal_def1 = GoalDefinitionStateLimits(goal_polygon1, [-0.08, 0.08]) goal_def2 = GoalDefinitionStateLimits(goal_polygon2, [-0.08, 0.08]) goal_def3 = GoalDefinitionStateLimits(goal_polygon3, [-0.08, 0.08]) goal_definition = GoalDefinitionSequential([goal_def1, goal_def2, goal_def3]) self.assertEqual(len(goal_definition.sequential_goals),3) agent = Agent(init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent) evaluator = EvaluatorGoalReached(agent.id) world.AddEvaluator("success", evaluator) # just drive with the single motion primitive should be successful for _ in range(0,1000): world.Step(0.2) info = world.Evaluate() if info["success"]: break self.assertEqual(info["success"], True) self.assertAlmostEqual(agent.state[int(StateDefinition.X_POSITION)], 30, delta=0.5)
def test_evaluator_drivable_area(self): # World Definition params = ParameterServer() world = World(params) # Model Definitions behavior_model = BehaviorConstantVelocity(params) execution_model = ExecutionModelInterpolate(params) dynamic_model = SingleTrackModel(params) # Map Definition map_interface = MapInterface() xodr_map = MakeXodrMapOneRoadTwoLanes() map_interface.SetOpenDriveMap(xodr_map) world.SetMap(map_interface) #open_drive_map = world.map.GetOpenDriveMap() #agent_2d_shape = CarLimousine() agent_2d_shape = Polygon2d( [1.25, 1, 0], [Point2d(-1, -1), Point2d(-1, 1), Point2d(3, 1), Point2d(3, -1)]) init_state = np.array([0, 3, -1.75, 0, 5]) agent_params = params.AddChild("agent1") goal_polygon = Polygon2d( [1, 1, 0], [Point2d(0, 0), Point2d(0, 2), Point2d(2, 2), Point2d(2, 0)]) goal_polygon = goal_polygon.Translate(Point2d(50, -2)) agent = Agent( init_state, behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, GoalDefinitionPolygon(goal_polygon), # goal_lane_id map_interface) world.AddAgent(agent) evaluator = EvaluatorDrivableArea() world.AddEvaluator("drivable_area", evaluator) info = world.Evaluate() self.assertFalse(info["drivable_area"]) viewer = MPViewer(params=params, use_world_bounds=True) # Draw map viewer.drawGoalDefinition(goal_polygon, color=(1, 0, 0), alpha=0.5, facecolor=(1, 0, 0)) viewer.drawWorld(world) viewer.drawRoadCorridor(agent.road_corridor) viewer.show(block=False)
def test_one_agent_at_goal_state_limits_frenet(self): param_server = ParameterServer() # Model Definition behavior_model = BehaviorConstantVelocity(param_server) execution_model = ExecutionModelInterpolate(param_server) dynamic_model = SingleTrackModel(param_server) # Agent Definition agent_2d_shape = CarLimousine() agent_params = param_server.AddChild("agent1") center_line = Line2d() center_line.AddPoint(Point2d(5.0, 5.0)) center_line.AddPoint(Point2d(10.0, 10.0)) center_line.AddPoint(Point2d(20.0, 10.0)) max_lateral_dist = (0.4, 1) max_orientation_diff = (0.08, 0.1) velocity_range = (20.0, 25.0) goal_definition = GoalDefinitionStateLimitsFrenet( center_line, max_lateral_dist, max_orientation_diff, velocity_range) # not at goal x,y, others yes agent1 = Agent(np.array([0, 6, 8, 3.14 / 4.0, velocity_range[0]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y and others agent2 = Agent(np.array([0, 5.0, 5.5, 3.14 / 4.0, velocity_range[1]]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent3 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 + max_orientation_diff[1] + 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y, orientation but not v agent4 = Agent( np.array([ 0, 5, 4.5, 3.14 / 4 - max_orientation_diff[0], velocity_range[0] - 0.01 ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # at goal x,y, at lateral limit agent5 = Agent( np.array([ 0, 15, 10 - max_lateral_dist[0] + 0.05, 0, velocity_range[1] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y slightly out of lateral limit agent6 = Agent( np.array([ 0, 15, 10 + max_lateral_dist[0] + 0.05, 3.14 / 4 + max_orientation_diff[0], velocity_range[0] ]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) # not at goal x,y,v yes but not orientation agent7 = Agent( np.array( [0, 5, 5.5, 3.14 / 4.0 - max_orientation_diff[0] - 0.001, 20]), behavior_model, dynamic_model, execution_model, agent_2d_shape, agent_params, goal_definition, None) world = World(param_server) world.AddAgent(agent1) world.AddAgent(agent2) world.AddAgent(agent3) world.AddAgent(agent4) world.AddAgent(agent5) world.AddAgent(agent6) world.AddAgent(agent7) evaluator1 = EvaluatorGoalReached(agent1.id) evaluator2 = EvaluatorGoalReached(agent2.id) evaluator3 = EvaluatorGoalReached(agent3.id) evaluator4 = EvaluatorGoalReached(agent4.id) evaluator5 = EvaluatorGoalReached(agent5.id) evaluator6 = EvaluatorGoalReached(agent6.id) evaluator7 = EvaluatorGoalReached(agent7.id) world.AddEvaluator("success1", evaluator1) world.AddEvaluator("success2", evaluator2) world.AddEvaluator("success3", evaluator3) world.AddEvaluator("success4", evaluator4) world.AddEvaluator("success5", evaluator5) world.AddEvaluator("success6", evaluator6) world.AddEvaluator("success7", evaluator7) info = world.Evaluate() self.assertEqual(info["success1"], False) self.assertEqual(info["success2"], True) self.assertEqual(info["success3"], False) self.assertEqual(info["success4"], False) self.assertEqual(info["success5"], True) self.assertEqual(info["success6"], False) self.assertEqual(info["success7"], False)